Effects of Plasma Activation on Hydrophilic Bonding of Si and SiO2

Low-temperature bonding of wafers has been studied utilizing reactive ion etching-mode plasma activation. The hydrophilic Si and thermally oxidized Si wafers were exposed to N 2 , Ar, or O 2 plasma prior to bonding in air or vacuum. After plasma treatment the wafers were cleaned in RCA-1 solution and/or deionized water. Strong bonding was achieved at 200°C with all the investigated plasma gases, if proper bonding and cleaning procedures were used. Extended RCA-I cleaning deteriorated the bond strength, but a short cleaning improved bonding. We found that the activation of the thermal oxide has a larger influence on the bond strength than the activation of the native oxide surface in Si/oxide wafer pairs. We suggest that the plasma treatment induces a highly disordered surface structure which enhances the diffusion of the water from the bonded interface. As a result of the plasma exposure the number of the surface OH groups is greatly increased enabling strong bonding at a low temperature.