Long gaps between primes

Let $p_n$ denotes the $n$-th prime. We prove that $$\max_{p_{n+1} \leq X} (p_{n+1}-p_n) \gg \frac{\log X \log \log X\log\log\log\log X}{\log \log \log X}$$ for sufficiently large $X$, improving upon recent bounds of the first three and fifth authors and of the fourth author. Our main new ingredient is a generalization of a hypergraph covering theorem of Pippenger and Spencer, proven using the R\"odl nibble method.

[1]  Junxian Li,et al.  A lower bound for the least prime in an arithmetic progression , 2016, 1607.02543.

[2]  Clive G. Jones On the Distribution of Prime Numbers , 2016 .

[3]  J. Maynard Dense clusters of primes in subsets , 2014, Compositio Mathematica.

[4]  Large gaps between consecutive prime numbers containing perfect $k$-th powers of prime numbers , 2015, 1512.03936.

[5]  Limit points and long gaps between primes , 2015, 1510.08054.

[6]  D. R. Heath-Brown,et al.  Large gaps between consecutive prime numbers containing perfect powers , 2014, 1411.6543.

[7]  Yitang Zhang Small gaps between primes , 2015 .

[8]  T. Tao,et al.  Large gaps between consecutive prime numbers , 2014, 1408.4505.

[9]  Large gaps between primes , 2014, 1408.5110.

[10]  D. Polymath,et al.  Variants of the Selberg sieve, and bounded intervals containing many primes , 2014, 1407.4897.

[11]  Siegfried Herzog,et al.  Empirical verification of the even Goldbach conjecture and computation of prime gaps up to 4⋅1018 , 2013, Math. Comput..

[12]  Holger Rauhut,et al.  A Mathematical Introduction to Compressive Sensing , 2013, Applied and Numerical Harmonic Analysis.

[13]  J. Maynard On the difference between consecutive primes , 2012, 1201.1787.

[14]  John B. Friedlander,et al.  Opera De Cribro , 2010 .

[15]  Ben Green,et al.  An inverse theorem for the Gowers U^{s+1}[N]-norm (announcement) , 2010, 1009.3998.

[16]  Ben Green,et al.  AN INVERSE THEOREM FOR THE GOWERS U4-NORM , 2005, Glasgow Mathematical Journal.

[17]  Ben Green,et al.  The quantitative behaviour of polynomial orbits on nilmanifolds , 2007, 0709.3562.

[18]  Ben Green,et al.  Linear equations in primes , 2006, math/0606088.

[19]  J. Pintz,et al.  The Difference Between Consecutive Primes, II , 2001 .

[20]  Van H. Vu,et al.  New bounds on nearly perfect matchings in hypergraphs: Higher codegrees do help , 2000, Random Struct. Algorithms.

[21]  H. Iwaniec,et al.  Sieve Methods , 2000 .

[22]  Very Large Gaps between Consecutive Primes , 1997 .

[23]  J. Kahn A linear programming perspective on the Frankl—Rödl—Pippenger theorem , 1996 .

[24]  A. Martin-Löf Some theorems concerning prime numbers , 1994 .

[25]  Andrew Granville,et al.  HARALD CRAM ER AND THE DISTRIBUTION OF PRIME NUMBERS , 1993 .

[26]  Paul Erdős A Tribute to Paul Erdős: Some of my favourite unsolved problems , 1990 .

[27]  C. Pomerance,et al.  Unusually large gaps between consecutive primes , 1990 .

[28]  Joel H. Spencer,et al.  Asymptotic behavior of the chromatic index for hypergraphs , 1989, J. Comb. Theory, Ser. A.

[29]  H. Maier,et al.  Irregularities in the distribution of primes in short intervals. , 1989 .

[30]  Adolf Hildebrand,et al.  On the number of positive integers ≦ x and free of prime factors > y , 1986 .

[31]  Vojtech Rödl,et al.  Near Perfect Coverings in Graphs and Hypergraphs , 1985, Eur. J. Comb..

[32]  Vojtech Rödl,et al.  On a Packing and Covering Problem , 1985, Eur. J. Comb..

[33]  Gaps between primes, and the pair correlation of zeros of the zeta-function , 1982 .

[34]  János Komlós,et al.  A Dense Infinite Sidon Sequence , 1981, Eur. J. Comb..

[35]  C. Pomerance A note on the least prime in an arithmetic progression , 1980 .

[36]  Henryk Iwaniec,et al.  ON THE PROBLEM OF JACOBSTHAL , 1978 .

[37]  S. Uchiyama On the difference between consecutive prime numbers , 1975 .

[38]  P. Gallagher,et al.  A large sieve density estimate near σ=1 , 1970 .

[39]  H. Davenport Multiplicative Number Theory , 1967 .

[40]  Arnold Schönhage Eine Bemerkung zur Konstruktion großer Primzahllücken , 1963 .

[41]  R. Rankin The Difference between Consecutive Prime Numbers V , 1938, Proceedings of the Edinburgh Mathematical Society.

[42]  de Ng Dick Bruijn On the number of positive integers $\leq x$ and free of prime factors $>y$ , 1951 .

[43]  Harald Cramér,et al.  On the order of magnitude of the difference between consecutive prime numbers , 1936 .

[44]  The difference of consecutive primes , 1940 .

[45]  L. Dickson History of the Theory of Numbers , 1924, Nature.

[46]  J. Littlewood,et al.  Some problems of ‘Partitio numerorum’; III: On the expression of a number as a sum of primes , 1923 .