In situ Ru K-edge EXAFS of CO adsorption on a Ru modified Pt/C fuel cell catalyst

[1]  M. Hogarth,et al.  Effects of composition on structure and activity of PtRu/C catalysts. , 2009, Physical chemistry chemical physics : PCCP.

[2]  P. P. Wells,et al.  Potential dependence of segregation and surface alloy formation of a Ru modified carbon supported Pt catalyst , 2007 .

[3]  F. Kaswalder,et al.  The possible role of metal carbonyl clusters in nanoscience and nanotechnologies , 2006 .

[4]  M. Ravikumar,et al.  Effect of Ru surface composition on the CO tolerance of Ru modified carbon supported Pt catalysts , 2004 .

[5]  A. Kucernak,et al.  Determination of the Platinum and Ruthenium Surface Areas in Platinum−Ruthenium Electrocatalysts by Underpotential Deposition of Copper. 2. Effect of Surface Composition on Activity , 2002 .

[6]  R. Behm,et al.  Composition and activity of high surface area PtRu catalysts towards adsorbed CO and methanol electrooxidation: A DEMS study , 2002 .

[7]  A. Kucernak,et al.  Determination of the platinum and ruthenium surface areas in platinum-ruthenium alloy electrocatalysts by underpotential deposition of copper. I. Unsupported catalysts , 2002 .

[8]  A. Russell,et al.  EXAFS of carbon monoxide oxidation on supported Pt fuel cell electrocatalysts , 2000 .

[9]  Andrei V. Ruban,et al.  Surface segregation energies in transition-metal alloys , 1999 .

[10]  J. Hazemann,et al.  X-ray absorption near edge structure study of the electro-oxidation reaction of CO on Pt50Ru50 nanoparticles , 1995 .

[11]  K. Amouzegar,et al.  Quantitative determination of dispersed platinum in carbon by cyclic voltammetry , 1995 .

[12]  A. C. Street,et al.  EXAFS INFRARED AND KINETIC-STUDIES ON A RUTHENIUM CARBONYL HYDROFORMYLATION SYSTEM , 1989 .