Data-driven methodologies for change detection in large-scale nonlinear dampers with noisy measurements

Large-scale viscous dampers are frequently used in civil structures to mitigate seismic and wind-induced vibration. For an effective condition assessment of nonlinear dampers, a probabilistic change detection methodology is proposed. The results of experimental studies with different large-scale nonlinear viscous dampers are shown. Considering damper experimental data with measurement uncertainty, the proposed data-driven methodology can be used to (1) detect small changes of a nonlinear system, (2) interpret the physical meanings of system changes, and (3) quantify the uncertainty of the detected changes without a priori knowledge of the system's characteristics.

[1]  James Theiler,et al.  Testing for nonlinearity in time series: the method of surrogate data , 1992 .

[2]  W. Mendenhall,et al.  Statistics for engineering and the sciences , 1984 .

[3]  E. Carlstein The Use of Subseries Values for Estimating the Variance of a General Statistic from a Stationary Sequence , 1986 .

[4]  B. Efron Bootstrap Methods: Another Look at the Jackknife , 1979 .

[5]  Peter Hall Resampling a coverage pattern , 1985 .

[6]  Sami F. Masri,et al.  Stochastic change detection in uncertain nonlinear systems using reduced-order models: system identification , 2008 .

[7]  Michael C. Constantinou,et al.  Fractional‐Derivative Maxwell Model for Viscous Dampers , 1991 .

[8]  J. Franke,et al.  BOOTSTRAPPING STATIONARY AUTOREGRESSIVE MOVING-AVERAGE MODELS , 1992 .

[9]  Jens Timmer,et al.  Power of surrogate data testing with respect to nonstationarity , 1998, chao-dyn/9807039.

[10]  Nicos Makris,et al.  Comparison of Modeling Approaches for Full-scale Nonlinear Viscous Dampers , 2008 .

[11]  Sami F. Masri,et al.  A Nonparametric Identification Technique for Nonlinear Dynamic Problems , 1979 .

[12]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[13]  Michael C. Constantinou,et al.  Experimental study of seismic response of buildings with supplemental fluid dampers , 1993 .

[14]  Gary F. Dargush,et al.  Analytical Model of Viscoelastic Fluid Dampers , 1993 .

[15]  Robert Tibshirani,et al.  Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy , 1986 .

[16]  D. W. Scott On optimal and data based histograms , 1979 .

[17]  Anthony C. Davison,et al.  Bootstrap Methods and Their Application , 1998 .

[18]  T. T. Soong,et al.  Passive Energy Dissipation Systems in Structural Engineering , 1997 .

[19]  Sami F. Masri,et al.  Monitoring the collision of a cargo ship with the Vincent Thomas Bridge , 2008 .

[20]  Angel R. Martinez,et al.  Computational Statistics Handbook with MATLAB , 2001 .

[21]  W. Härdle,et al.  Bootstrap Methods for Time Series , 2003 .

[22]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[23]  G. Tomlinson,et al.  Nonlinearity in Structural Dynamics: Detection, Identification and Modelling , 2000 .

[24]  T. J. Rivlin The Chebyshev polynomials , 1974 .

[25]  P. J. Green,et al.  Probability and Statistical Inference , 1978 .