Combinatorial problems on the illumination of convex bodies

Summary. This is a review of various problems and results on the illumination of convex bodies in the spirit of combinatorial geometry. The topics under review are: history of the Gohberg-Markus-Hadwiger problem on the minimum number of exterior sources illuminating a convex body, including the discussion of its equivalent forms like the minimum number of homothetic copies covering the body; generalization of this problem for the case of unbounded convex bodies; visibility and inner illumination of convex bodies; primitive illuminating systems for convex bodies; illumination and visibility of families of convex bodies; clouds formed by translates or homothetic copies of a convex body; miscellaneous results.

[1]  Ein geometrisches Überdeckungsproblem , 1954 .

[2]  F. Levi Überdeckung eines Eibereiches durch Parallelverschiebung seines offenen Kerns , 1955 .

[3]  G. C. Shephard,et al.  The difference body of a convex body , 1957 .

[4]  C. A. Rogers A note on coverings , 1957 .

[5]  Drei Beispiele zu Lagerungsproblemen , 1960 .

[6]  C. A. Rogers Covering a sphere with spheres , 1963 .

[7]  V. Klee,et al.  Helly's theorem and its relatives , 1963 .

[8]  B. Grünbaum Fixing systems and inner illumination , 1964 .

[9]  Paul Erdös,et al.  The star number of coverings of space with convex bodies , 1964 .

[10]  G. C. Shephard,et al.  Convex Polytopes , 1969, The Mathematical Gazette.

[11]  On the Number of Spheres Which can Hide a Given Sphere , 1967, Canadian Journal of Mathematics.

[12]  E. Bolker A class of convex bodies , 1969 .

[13]  A characterization of the parallelepiped in $E^{n}$. , 1970 .

[14]  ILLUMINATION FROM WITHIN OF THE BOUNDARY OF A CONVEX BODY , 1972 .

[15]  P. Mani Inner illumination of convex polytopes , 1974 .

[16]  Gyula O. H. Katona On a problem of L. Fejes Tóth , 1977 .

[17]  L. Tóth Illumination of convex discs , 1977 .

[18]  The decomposition of figures into smaller parts , 1980 .

[19]  J. Linhart Die Beleuchtung Von Kugeln , 1981 .

[20]  Illuminability of a subset of the boundary of a convex body , 1984 .

[21]  Marek Lassak Solution of Hadwiger's Covering Problem for Centrally Symmetric Convex Bodies in E3 , 1984 .

[22]  J. O'Rourke Art gallery theorems and algorithms , 1987 .

[23]  Marek Lassak Covering the boundary of a convex set by tiles , 1988 .

[24]  M. Breen j-partitions for visible shorelines , 1988 .

[25]  O. Schramm Illuminating Sets of Constant Width , 1988 .

[26]  Jorge Urrutia,et al.  Galleries, Light Matchings and Visibility Graphs , 1989, WADS.

[27]  Visible shorelines inRd , 1989 .

[28]  Jorge Urrutia,et al.  GALLERIES AND LIGHT MATCHINGS: FAT COOPERATIVE GUARDS , 1991 .

[29]  K. Bezdek THE PROBLEM OF ILLUMINATION OF THE BOUNDARY OF A CONVEX BODY BY AFFINE SUBSPACES , 1991 .

[30]  Kenneth Falconer,et al.  Unsolved Problems In Geometry , 1991 .

[31]  SOLUTION OF HADWIGER'S PROBLEM FOR A CLASS OF CONVEX BODIES , 1991 .

[32]  Alexander Soifer,et al.  Geometric Etudes in Combinatorial Mathematics , 1991 .

[33]  Victor Klee,et al.  Old And New Unsolved Problems In Plane Geometry And Number Theory , 1991 .

[34]  T. Shermer Recent Results in Art Galleries , 1992 .

[35]  Karoly Bezdek On the illumination of unbounded closed convex sets , 1992 .

[36]  Vladimir G. Boltyanski,et al.  A solution of Hadwiger's covering problem for zonoids , 1992, Comb..

[37]  Károly Bezdek On the illumination of smooth convex bodies , 1992 .

[38]  Hadwiger's Covering Conjecture and Its Relatives , 1992 .

[39]  On the multiplicity of illumination of convex bodies by point sources , 1993 .

[40]  Jorge Urrutia,et al.  Illuminating Rectangles and Triangles in the Plane , 1993, J. Comb. Theory, Ser. B.

[41]  T. Bisztriczky,et al.  Hadwiger's covering conjecture and low dimensional dual cyclic polytopes , 1993 .

[42]  Michel Mollard,et al.  An illumination problem for zonoids , 1993 .

[43]  Peter Schmitt,et al.  Problems in Discrete and Combinatorial Geometry , 1993 .

[44]  Károly Bezdek A note on the illumination of convex bodies , 1993 .

[45]  K. Bezdek,et al.  Hadwiger-Levi’s Covering Problem Revisited , 1993 .

[46]  Jorge Urrutia,et al.  Protecting convex sets , 1994, Graphs Comb..

[47]  Every convexn-dimensional body with a smooth belt can be illuminated byn + 1 directions , 1994 .

[48]  Jorge Urrutia,et al.  On illuminating line segments in the plane , 1995, Discret. Math..

[49]  Jorge Urrutia,et al.  Illuminating high-dimensional convex sets , 1995 .

[50]  On Grünbaum's problem about inner illumination of convex bodies , 1995 .

[51]  Chuanming Zong Some remarks concerning kissing numbers, blocking numbers and covering numbers , 1995 .

[52]  János Pach,et al.  Combinatorial Geometry , 2012 .

[53]  V. Boltyanski,et al.  Combinatorial geometry of belt bodies , 1995 .

[54]  V. Boltyanski,et al.  Excursions into Combinatorial Geometry , 1996 .

[55]  Horst Martini,et al.  Shadow-boundaries of convex bodies , 1996, Discret. Math..

[57]  C. Zong A Problem of Blocking Light Rays , 1997 .

[58]  Károly Bezdek,et al.  A Proof of Hadwiger's Covering Conjecture for Dual Cyclic Polytopes , 1997 .

[59]  Light-Sources That Illuminate the Boundary Points All But the Vertices of a Convex Polyhedron , 1997 .

[60]  Chuanming Zong,et al.  Covering convex bodies by translates of convex bodies , 1997 .

[61]  The illumination problem , 1998 .

[62]  Ll Aszll O Szabb,et al.  Recent Results on Illumination Problems , 1998 .

[63]  Horst Martini,et al.  On Grünbaum's Conjecture about Inner Illumination of Convex Bodies , 1999, Discret. Comput. Geom..

[64]  H. Martini,et al.  A characterization of simplices in terms of visibility , 1999 .

[65]  Primitive Inner Illuminating Systems for Convex Bodies , 2000 .