High Molecular Weight Polybenzimidazole Membranes for High Temperature PEMFC

High temperature operation of proton exchange membrane fuel cells under ambient pressure has been achieved by using phosphoric acid doped polybenzimidazole (PBI) membranes. To optimize the membrane and fuel cells, high performance polymers were synthesized of molecular weights from 30 to 94 kDa with good solubility in organic solvents. Membranes fabricated from the polymers were systematically characterized in terms of oxidative stability, acid doping and swelling, conductivity, mechanical strength and fuel cell performance and durability. With increased molecular weights the polymer membranes showed enhanced chemical stability towards radical attacks under the Fenton test, reduced volume swelling upon the acid doping and improved mechanical strength at acid doping levels of as high as about 11 mol H3PO4 per molar repeat polymer unit. The PBI‐78kDa/10.8PA membrane, for example, exhibited tensile strength of 30.3 MPa at room temperature or 7.3 MPa at 130 °C and a proton conductivity of 0.14 S cm–1 at 160 °C. Fuel cell tests with H2 and air at 160 °C showed high open circuit voltage, power density and a low degradation rate of 1.5 μV h–1 at a constant load of 300 mA cm–2.

[1]  W. Xing,et al.  Oxidative degradation of acid doped polybenzimidazole membranes and fuel cell durability in the presence of ferrous ions , 2013 .

[2]  D. Aili,et al.  Covalently cross-linked sulfone polybenzimidazole membranes with poly(vinylbenzyl chloride) for fuel cell applications. , 2013, ChemSusChem.

[3]  D. Wan,et al.  Crosslinked polybenzimidazole via a Diels–Alder reaction for proton conducting membranes , 2012 .

[4]  Mark E Tuckerman,et al.  The mechanism of proton conduction in phosphoric acid. , 2012, Nature chemistry.

[5]  Chenxi Xu,et al.  Synthesis and properties of poly(aryl sulfone benzimidazole) and its copolymers for high temperature membrane electrolytes for fuel cells , 2012 .

[6]  B. Yi,et al.  High-temperature proton-exchange-membrane fuel cells using an ether-containing polybenzimidazole membrane as electrolyte. , 2012, ChemSusChem.

[7]  Piercarlo Mustarelli,et al.  Polymer fuel cells based on polybenzimidazole/H3PO4 , 2012 .

[8]  Frederik C. Krebs,et al.  Roll-to-roll coated PBI membranes for high temperature PEM fuel cells , 2012 .

[9]  D. Aili,et al.  Thermal curing of PBI membranes for high temperature PEM fuel cells , 2012 .

[10]  Hongwei Zhang,et al.  Advances in the high performance polymer electrolyte membranes for fuel cells. , 2012, Chemical Society reviews.

[11]  Hsiu-Li Lin,et al.  Polybenzimidazole and butylsulfonate grafted polybenzimidazole blends for proton exchange membrane fuel cells , 2012 .

[12]  Hyuk Chang,et al.  Cross-Linked Benzoxazine–Benzimidazole Copolymer Electrolyte Membranes for Fuel Cells at Elevated Temperature , 2012 .

[13]  Hsiu-Li Lin,et al.  Poly(benzimidazole)-epoxide crosslink membranes for high temperature proton exchange membrane fuel cells , 2012 .

[14]  J. Jensen,et al.  Oxidative Degradation of Polybenzimidazole Membranes as Electrolytes for High Temperature Proton Exchange Membrane Fuel Cells , 2011 .

[15]  D. Plackett,et al.  High-temperature proton exchange membranes based on polybenzimidazole and clay composites for fuel cells , 2011 .

[16]  P. Cañizares,et al.  Enhancement of the fuel cell performance of a high temperature proton exchange membrane fuel cell running with titanium composite polybenzimidazole-based membranes , 2011 .

[17]  T. Jana,et al.  Polybenzimidazole gel membrane for the use in fuel cell , 2011 .

[18]  Nam Hoon Kim,et al.  Polymer membranes for high temperature proton exchange membrane fuel cell : recent advances and challenges , 2011 .

[19]  B. Benicewicz,et al.  Synthesis and Properties of Random Copolymers of Functionalised Polybenzimidazoles for High Temperature Fuel Cells , 2011 .

[20]  Gang Zhang,et al.  Cross-linked polybenzimidazole with enhanced stability for high temperature proton exchange membrane fuel cells , 2011 .

[21]  R. He,et al.  Preparation and characterization of polybenzimidazole membranes prepared by gelation in phosphoric acid , 2010 .

[22]  R. He,et al.  A copolymer of poly[2,2′-(m-phenylene)-5,5′- bibenzimidazole] and poly(2,5-benzimidazole) for high-temperature proton-conducting membranes , 2010 .

[23]  Pedro Gómez-Romero,et al.  Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest. , 2010, Chemical Society reviews.

[24]  T. Lim,et al.  Synthesis and characterization of acid-doped polybenzimidazole membranes by sol–gel and post-membrane casting method , 2010 .

[25]  N. Kim,et al.  A new self-cross-linked, net-structured, proton conducting polymer membrane for high temperature proton exchange membrane fuel cells , 2010 .

[26]  Dependence of some properties of phosphoric acid doped PBIs on their chemical structure , 2010 .

[27]  Jens Oluf Jensen,et al.  Properties, degradation and high temperature fuel cell test of different types of PBI and PBI blend membranes , 2010 .

[28]  Brian C. Benicewicz,et al.  Synthesis and Properties of Functionalized Polybenzimidazoles for High-Temperature PEMFCs , 2009 .

[29]  I. Cabasso,et al.  Polybenzimidazole (PBI) molecular weight and Mark‐Houwink equation , 2009 .

[30]  Robert F. Savinell,et al.  High temperature proton exchange membranes based on polybenzimidazoles for fuel cells , 2009 .

[31]  Brian C. Benicewicz,et al.  Durability Studies of PBI‐based High Temperature PEMFCs , 2008 .

[32]  Hsiu-Li Lin,et al.  Preparation of PBI/PTFE composite membranes from PBI in N,N′-dimethyl acetamide solutions with various concentrations of LiCl , 2008 .

[33]  Thomas J. Schmidt,et al.  Properties of high-temperature PEFC Celtec®-P 1000 MEAs in start/stop operation mode , 2008 .

[34]  Pablo Cañizares,et al.  Improved polybenzimidazole films for H3PO4-doped PBI-based high temperature PEMFC , 2007 .

[35]  Ronghuan He,et al.  Preparation and operation of gas diffusion electrodes for high-temperature proton exchange membrane fuel cells , 2007 .

[36]  Jong‐Chan Lee,et al.  High-temperature fuel cell membranes based on mechanically stable para-ordered polybenzimidazole prepared by direct casting , 2007 .

[37]  Qingfeng Li,et al.  Doping phosphoric acid in polybenzimidazole membranes for high temperature proton exchange membrane fuel cells , 2007 .

[38]  Qingfeng Li,et al.  Cross-Linked Polybenzimidazole Membranes for Fuel Cells , 2007 .

[39]  Zhigang Qi,et al.  Effect of open circuit voltage on performance and degradation of high temperature PBI–H3PO4 fuel cells , 2006 .

[40]  Ravindra Datta,et al.  Performance analysis and impedance spectral signatures of high temperature PBI–phosphoric acid gel membrane fuel cells , 2006 .

[41]  Torsten Berning,et al.  Improving the performance of high-temperature PEM fuel cells based on PBI electrolyte , 2006 .

[42]  J. Kerres Covalent‐Ionically Cross‐linked Poly(Etheretherketone)‐Basic Polysulfone Blend Ionomer Membranes , 2006 .

[43]  Ronghuan He,et al.  Physicochemical properties of phosphoric acid doped polybenzimidazole membranes for fuel cells , 2006 .

[44]  Brian C. Benicewicz,et al.  High-Temperature Polybenzimidazole Fuel Cell Membranes via a Sol-Gel Process , 2005 .

[45]  M. Rodrigo,et al.  Purification of wet-process phosphoric acid by hydrogen peroxide oxidation, activated carbon adsorption and electrooxidation , 2005 .

[46]  S. Haufe,et al.  Probing structure and dynamics in poly[2,2 '-(m-phenylene)-5,5 '-bibenzimidazole] fuel cells with magic-angle spinning NMR , 2004 .

[47]  Qingfeng Li,et al.  Water uptake and acid doping of polybenzimidazoles as electrolyte membranes for fuel cells , 2004 .

[48]  A. Panchenko,et al.  In situ EPR investigation of polymer electrolyte membrane degradation in fuel cell applications , 2004 .

[49]  Jesse S. Wainright,et al.  Conductivity of PBI Membranes for High-Temperature Polymer Electrolyte Fuel Cells , 2004 .

[50]  Ronghuan He,et al.  Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors , 2003 .

[51]  B. Steele,et al.  Materials for fuel-cell technologies , 2001, Nature.

[52]  R. Bouchet,et al.  Proton conduction in acid doped polybenzimidazole , 1999 .

[53]  E. Roduner,et al.  EPR investigation of HO/ radical initiated degradation reactions of sulfonated aromatics as model compounds for fuel cell proton conducting membranes , 1999 .

[54]  Deborah J. Jones,et al.  Investigation of the conduction properties of phosphoric and sulfuric acid doped polybenzimidazole , 1999 .

[55]  R. Savinell,et al.  Thermal Stability of Proton Conducting Acid Doped Polybenzimidazole in Simulated Fuel Cell Environments , 1996 .

[56]  Jesse S. Wainright,et al.  Acid-doped polybenzimidazoles : a new polymer electrolyte , 1995 .

[57]  E. Neuse Aromatic polybenzimidazoles. Syntheses, properties, and applications , 1982 .

[58]  R. Shroff Single-point determination of intrinsic viscosity , 1965 .