A Semantic Proof that Reducibility Candidates entail Cut Elimination
暂无分享,去创建一个
[1] Claude Kirchner,et al. Theorem Proving Modulo , 2003, Journal of Automated Reasoning.
[2] A. Troelstra,et al. Constructivism in Mathematics: An Introduction , 1988 .
[3] Claude Kirchner,et al. HOL-λσ: an intentional first-order expression of higher-order logic , 2001, Mathematical Structures in Computer Science.
[4] Catarina Coquand,et al. From Semantics to Rules: A Machine Assisted Analysis , 1993, CSL.
[5] Gilles Dowek,et al. A Simple Proof That Super-Consistency Implies Cut Elimination , 2007, RTA.
[6] Martin Hofmann,et al. Categorical Reconstruction of a Reduction Free Normalization Proof , 1995, Category Theory and Computer Science.
[7] Denis Cousineau,et al. On completeness of reducibility candidates as a semantics of strong normalization , 2012, Log. Methods Comput. Sci..
[8] Claude Kirchner,et al. HOL-lambdasigma: An Intentional First-Order Expression of Higher-Order Logic , 1999, RTA.
[9] Olivier Hermant,et al. Semantic Cut Elimination in the Intuitionistic Sequent Calculus , 2005, TLCA.
[10] Richard Bonichon,et al. On Constructive Cut Admissibility in Deduction Modulo , 2006, TYPES.
[11] Colin Riba,et al. Union of Reducibility Candidates for Orthogonal Constructor Rewriting , 2008, CiE.
[12] Gilles Dowek,et al. Cut elimination for Zermelo set theory , 2023, ArXiv.
[13] Lev Gordeev,et al. Basic proof theory , 1998 .
[14] Gilles Dowek,et al. Arithmetic as a Theory Modulo , 2005, RTA.
[15] G. Gentzen. Untersuchungen über das logische Schließen. I , 1935 .
[16] J. Gallier,et al. A Proof of Strong Normalization for the Theor y of Constructions Using a Kripke-like Interpretation , 1990 .
[17] J. Girard. Une Extension De ĽInterpretation De Gödel a ĽAnalyse, Et Son Application a ĽElimination Des Coupures Dans ĽAnalyse Et La Theorie Des Types , 1971 .
[18] Gilles Dowek,et al. Proof normalization modulo , 1998, Journal of Symbolic Logic.
[19] Martin Hofmann,et al. Normalization by evaluation for typed lambda calculus with coproducts , 2001, Proceedings 16th Annual IEEE Symposium on Logic in Computer Science.