Local discontinuous Galerkin numerical solutions of non-Newtonian incompressible flows modeled by p-Navier-Stokes equations

We present a Local Discontinuous Galerkin (LDG) method for solving non-Newtonian incompressible flow problems. The problems are modeled by p-type Navier–Stokes equations, the extra stress tensor follows a p-power rule (p-NS). The aim of this paper is to present an efficient way for discretizing the governing equations by an LDG method, choosing both equal and mixed order local polynomial space for velocity and pressure. The velocity gradient is introduced as an auxiliary variable and the p-NS system is decomposed into a first order system including the projection of the nonlinear stress tensor components to the local discontinuous space. Every equation resulting from the splitting of the extra stress tensor is discretized under the DG element by element technique. In the divergence constraint equation, an artificial compressibility term (time derivative of the pressure with a small parameter) is added and the first order terms are expressed in a divergence form, and are discretized by utilizing the Lax–Friedrichs numerical fluxes. An upwind wave analysis is applied on the outflow boundary for constructing artificial outflow boundary conditions. For the time discretization, s-stage Diagonally Implicit Runge–Kutta schemes are applied. Numerical experiments on problems with known exact solutions are performed for verifying the expected convergence rates of the method. Benchmark problems are considered in order to check the performance of the method for solving flow problems described by p-NS systems.

[1]  R. Alexander Diagonally implicit runge-kutta methods for stiff odes , 1977 .

[2]  Bernardo Cockburn,et al.  journal homepage: www.elsevier.com/locate/cma , 2022 .

[3]  D. Drikakis Bifurcation phenomena in incompressible sudden expansion flows , 1997 .

[4]  Petr Sváček,et al.  On approximation of non-Newtonian fluid flow by the finite element method , 2008 .

[5]  Adrian Hirn,et al.  Approximation of the p-Stokes Equations with Equal-Order Finite Elements , 2013 .

[6]  Lars Diening,et al.  A local discontinuous Galerkin approximation for systems with p-structure , 2014 .

[7]  M. Ruzicka,et al.  Non-Newtonian fluids and function spaces , 2007 .

[8]  J. R. Cash,et al.  Diagonally Implicit Runge-Kutta Formulae with Error Estimates , 1979 .

[9]  A. Duarte,et al.  Numerical and analytical modeling of unsteady viscoelastic flows: The start-up and pulsating test case problems , 2008 .

[10]  R. Sani,et al.  Résumé and remarks on the open boundary condition minisymposium , 1994 .

[11]  G. Gatica,et al.  A mixed local discontinuous Galerkin method for a class of nonlinear problems in fluid mechanics , 2005 .

[12]  D. Degani,et al.  Stability and existence of multiple solutions for viscous flow in suddenly enlarged channels , 1990 .

[13]  Asif Usmani,et al.  Finite Element Analysis of Non-Newtonian Flow: Theory and Software , 1998 .

[14]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[15]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[16]  N. V. Shirobokov Diagonally implicit Runge-Kutta methods , 2002 .

[17]  Li Yuan,et al.  Upwind compact finite difference scheme for time-accurate solution of the incompressible Navier-Stokes equations , 2010, Appl. Math. Comput..

[18]  Robert J. Poole,et al.  Bifurcation phenomena in viscoelastic flows through a symmetric 1:4 expansion , 2007 .

[19]  J. Oden,et al.  Finite Element Methods for Flow Problems , 2003 .

[20]  Bernardo Cockburn,et al.  The Derivation of Hybridizable Discontinuous Galerkin Methods for Stokes Flow , 2009, SIAM J. Numer. Anal..

[21]  Graham F. Carey,et al.  Non‐Newtonian flow in branched pipes and artery models , 2008 .

[22]  Rolf Rannacher,et al.  On the Numerical Solution of the Incompressible Navier‐Stokes Equations , 1993 .

[23]  Guido Kanschat,et al.  Local Discontinuous Galerkin Methods for the Stokes System , 2002, SIAM J. Numer. Anal..

[24]  R. P. Chhabra,et al.  Non-Newtonian Flow and Applied Rheology: Engineering Applications , 2008 .

[25]  T. Mullin,et al.  Nonlinear flow phenomena in a symmetric sudden expansion , 1990, Journal of Fluid Mechanics.

[26]  N. Phan-Thien,et al.  Galerkin/least-square finite-element methods for steady viscoelastic flows , 1999 .

[27]  Bo Dong,et al.  A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems , 2008, Math. Comput..

[28]  Dionysis Assimacopoulos,et al.  A finite volume approach in the simulation of viscoelastic expansion flows , 1998 .

[29]  Marco Dressler,et al.  Computational Rheology , 2002 .

[30]  G. Böhme,et al.  Non-Newtonian flow analysis by finite elements , 1989 .

[31]  Cédric Chauvière,et al.  A new spectral element method for the reliable computation of viscoelastic flow , 2001 .

[32]  M M Hafez Numerical Simulations of Incompressible Flows , 2003 .

[33]  Lars Diening,et al.  On the Finite Element Approximation of p-Stokes Systems , 2012, SIAM J. Numer. Anal..

[34]  F. Baaijens Numerical analysis of unsteady viscoelastic flow , 1992 .

[35]  J. Reddy,et al.  Finite-element analysis of flows of non-Newtonian fluids in three-dimensional enclosures , 1992 .

[36]  D. Kröner,et al.  Numerical solutions of systems with (p,δ)‐structure using local discontinuous Galerkin finite element methods , 2014 .

[37]  Raytcho D. Lazarov,et al.  Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..

[38]  Bernardo Cockburn,et al.  An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations , 2011, J. Comput. Phys..

[39]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[40]  Katharina Burger Computation Of Viscous Incompressible Flows , 2016 .

[41]  Paulo J. Oliveira,et al.  Asymmetric flows of viscoelastic fluids in symmetric planar expansion geometries , 2003 .

[42]  J. Chemin Incompressible Navier-Stokes equations , 2012 .

[43]  John E. Hershey,et al.  Computation , 1991, Digit. Signal Process..

[44]  R. Bustinza A unified analysis of the local discontinuous Galerkin method for a class of nonlinear problems , 2006 .

[45]  Guido Kanschat,et al.  A locally conservative LDG method for the incompressible Navier-Stokes equations , 2004, Math. Comput..

[46]  R. Tanner,et al.  Numerical Simulation of Non-Newtonian Flow , 1984 .

[47]  Ohannes A. Karakashian,et al.  A Discontinuous Galerkin Method for the Incompressible Navier-Stokes Equations , 2000 .

[48]  Xikui Li,et al.  Numerical modeling of viscoelastic flows using equal low-order finite elements , 2010 .

[49]  J. Tinsley Oden,et al.  Stability of some mixed finite element methods for Stokesian flows , 1984 .

[50]  M. Gunzburger,et al.  The Stokes Equations , 2009 .

[51]  Gerrit W. M. Peters,et al.  Viscoelastic flow past a confined cylinder of a low-density polyethylene melt , 1997 .

[52]  Charles L. Merkle,et al.  Evolution of Artificial Compressibility Methods in CFD , 2003 .

[53]  Guido Kanschat,et al.  An Equal-Order DG Method for the Incompressible Navier-Stokes Equations , 2009, J. Sci. Comput..

[54]  Jie Shen On a new pseudocompressibility method for the incompressible Navier-Stokes equations , 1996 .

[55]  Guido Kanschat,et al.  The local discontinuous Galerkin method for linearized incompressible fluid flow: a review , 2005 .

[56]  Robert J. Poole,et al.  Development-Length Requirements for Fully Developed Laminar Pipe Flow of Inelastic Non-Newtonian Liquids , 2007 .

[57]  F. Baaijens,et al.  Application of low-order Discontinuous Galerkin methods to the analysis of viscoelastic flows , 1994 .

[58]  John A. Ekaterinaris,et al.  Artificial boundary conditions for the numerical solution of the Euler equations by the discontinuous galerkin method , 2011, J. Comput. Phys..

[59]  R. Poole Development-Length Requirements for Fully Developed Laminar Flow in Concentric Annuli , 2010 .