Multiscale RBF-based central high resolution schemes for simulation of generalized thermoelasticity problems

In this study, average-interpolating radial basis functions (RBFs) are successfully integrated with central high-resolution schemes to achieve a higher-order central method. This proposed method is used for simulation of generalized coupled thermoelasticity problems including shock (singular) waves in their solutions. The thermoelasticity problems include the LS (systems with one relaxation parameter) and GN (systems without energy dissipation) theories with constant and variable coefficients. In the central high resolution formulation, RBFs lead to a reconstruction with the optimum recovery with minimized roughness on each cell: this is essential for oscillation-free reconstructions. To guarantee monotonic reconstructions at cell-edges, the nonlinear scaling limiters are used. Such reconstructions, finally, lead to the total variation bounded (TVB) feature. As RBFs work satisfactory on non-uniform cells/grids, the proposed central scheme can handle adapted cells/grids. To have cost effective and accurate simulations, the multiresolution–based grid adaptation approach is then integrated with the RBF-based central scheme. Effects of condition numbers of RBFs, computational complexity and cost of the proposed scheme are studied. Finally, different 1-D coupled thermoelasticity benchmarks are presented. There, performance of the adaptive RBF-based formulation is compared with that of the adaptive Kurganov-Tadmor (KT) second-order central high-resolution scheme with the total variation diminishing (TVD) property.

[1]  Mehdi Dehghan,et al.  A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions , 2008, Math. Comput. Simul..

[2]  H. Youssef Dependence of modulus of elasticity and thermal conductivity on reference temperature in generalized thermoelasticity for an infinite material with a spherical cavity , 2005 .

[3]  Mahmoud Kadkhodaei,et al.  Buckling analysis of rectangular functionally graded plates under various edge conditions using Fourier series expansion , 2013 .

[4]  Fernando T. Pinho,et al.  Adaptive multiresolution approach for solution of hyperbolic PDEs , 2002 .

[5]  P. M. Naghdi,et al.  Thermoelasticity without energy dissipation , 1993 .

[6]  B. V. Leer,et al.  Towards the Ultimate Conservative Difference Scheme , 1997 .

[7]  G. Fasshauer,et al.  Scattered Data Approximation of Noisy Data via Iterated Moving Least Squares , 2007 .

[8]  Armin Iske,et al.  Multiresolution Methods in Scattered Data Modelling , 2004, Lecture Notes in Computational Science and Engineering.

[9]  M. Aouadi Generalized thermo-piezoelectric problems with temperature-dependent properties , 2006 .

[10]  M. Ezzat,et al.  On fractional thermoelasticity , 2011 .

[11]  R. Franke Scattered data interpolation: tests of some methods , 1982 .

[12]  Nonlinear dynamic response of symmetric laminated composite beams under combined in-plane and lateral loadings using full layerwise theory , 2016 .

[13]  E. Tadmor,et al.  Third order nonoscillatory central scheme for hyperbolic conservation laws , 1998 .

[14]  Asymptotic approach to transient thermal shock problem with variable material properties , 2019 .

[15]  Albert Cohen,et al.  Fully adaptive multiresolution finite volume schemes for conservation laws , 2003, Math. Comput..

[16]  Michael Golomb,et al.  OPTIMAL APPROXIMATIONS AND ERROR BOUNDS , 1958 .

[17]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[18]  T. Driscoll,et al.  Interpolation in the limit of increasingly flat radial basis functions , 2002 .

[19]  E. Kansa MULTIQUADRICS--A SCATTERED DATA APPROXIMATION SCHEME WITH APPLICATIONS TO COMPUTATIONAL FLUID-DYNAMICS-- II SOLUTIONS TO PARABOLIC, HYPERBOLIC AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 1990 .

[20]  Mostafa Abbaszadeh,et al.  The space-splitting idea combined with local radial basis function meshless approach to simulate conservation laws equations , 2017, Alexandria Engineering Journal.

[21]  Nira Dyn,et al.  Image Warping by Radial Basis Functions: Application to Facial Expressions , 1994, CVGIP Graph. Model. Image Process..

[22]  Siegfried M Uller,et al.  Application of Multiscale Techniques to Hyperbolic Conservation Laws , 1998 .

[23]  Robert Schaback,et al.  Error estimates and condition numbers for radial basis function interpolation , 1995, Adv. Comput. Math..

[24]  Zhigang Wu,et al.  A time discontinuous Galerkin finite element method for generalized thermo-elastic wave analysis, considering non-Fourier effects , 2014 .

[25]  M. Powell,et al.  Tabulation of Thin Plate Splines on a Very Fine Two-Dimensional Grid , 1992 .

[26]  G. Ben-Dor,et al.  Numerical investigation of the propagation of shock waves in rigid porous materials: development of the computer code and comparison with experimental results , 1996, Journal of Fluid Mechanics.

[27]  George Roussos,et al.  Rapid evaluation of radial basis functions , 2005 .

[28]  Shmuel Rippa,et al.  An algorithm for selecting a good value for the parameter c in radial basis function interpolation , 1999, Adv. Comput. Math..

[29]  H. Yousefi,et al.  Multiresolution-Based Adaptive Simulation of Wave Equation , 2012 .

[30]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[31]  D. Liu,et al.  Thermoelastic behavior of elastic media with temperature-dependent properties under transient thermal shock , 2016 .

[32]  Y. V. S. S. Sanyasiraju,et al.  On optimization of the RBF shape parameter in a grid-free local scheme for convection dominated problems over non-uniform centers , 2013 .

[33]  Ignasi Colominas,et al.  High-order Finite Volume Methods and Multiresolution Reproducing Kernels , 2008 .

[34]  D. Chandrasekharaiah,et al.  Thermoelasticity with Second Sound: A Review , 1986 .

[35]  Mehdi Dehghan,et al.  On the total variation of a third-order semi-discrete central scheme for 1D conservation laws , 2011 .

[36]  P. M. Naghdi,et al.  A re-examination of the basic postulates of thermomechanics , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[37]  R. L. Hardy Multiquadric equations of topography and other irregular surfaces , 1971 .

[38]  Bengt Fornberg,et al.  Stable computations with flat radial basis functions using vector-valued rational approximations , 2016, J. Comput. Phys..

[39]  A. Harten Multiresolution algorithms for the numerical solution of hyperbolic conservation laws , 2010 .

[40]  Elisabeth Larsson,et al.  Stable Computations with Gaussian Radial Basis Functions , 2011, SIAM J. Sci. Comput..

[41]  A. Mendes,et al.  Adaptive multiresolution approach for two-dimensional PDEs , 2004 .

[42]  Armin Iske,et al.  Adaptive ADER Methods Using Kernel-Based Polyharmonic Spline WENO Reconstruction , 2010, SIAM J. Sci. Comput..

[43]  Deep Ray,et al.  A Sign Preserving WENO Reconstruction Method , 2015, J. Sci. Comput..

[44]  Richard B. Hetnarski,et al.  Encyclopedia Of Thermal Stresses , 2013 .

[45]  Jingyang Guo,et al.  Radial Basis Function ENO and WENO Finite Difference Methods Based on the Optimization of Shape Parameters , 2016, Journal of Scientific Computing.

[46]  H. Sherief,et al.  Effect of variable thermal conductivity on a half-space under the fractional order theory of thermoelasticity , 2013 .

[47]  Ibrahim A. Abbas,et al.  Eigenvalue approach in a three-dimensional generalized thermoelastic interactions with temperature-dependent material properties , 2014, Comput. Math. Appl..

[48]  A. Abouelregal,et al.  Magneto-thermoelasticity for an infinite body with a spherical cavity and variable material properties without energy dissipation , 2010 .

[49]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[50]  A. U.S.,et al.  Stable Computation of Multiquadric Interpolants for All Values of the Shape Parameter , 2003 .

[51]  T. Sonar Optimal recovery using thin plate splines in finite volume methods for the numerical solution of hyperbolic conservation laws , 1996 .

[52]  T. J. Rivlin,et al.  Optimal Estimation in Approximation Theory , 1977 .

[53]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[54]  Yan Wang,et al.  Asymptotic solutions for generalized thermoelasticity with variable thermal material properties , 2016 .

[55]  G. Russo,et al.  Central WENO schemes for hyperbolic systems of conservation laws , 1999 .

[56]  M. J. D. Powell Truncated Laurent expansions for the fast evaluation of thin plate splines , 2005, Numerical Algorithms.

[57]  E. Tadmor,et al.  New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection—Diffusion Equations , 2000 .

[58]  Y. Povstenko Fractional Cattaneo-Type Equations and Generalized Thermoelasticity , 2011 .

[59]  Guirong Liu,et al.  On the optimal shape parameters of radial basis functions used for 2-D meshless methods , 2002 .

[60]  Asymptotic Analysis of Thermoelastic Response in a Functionally Graded Solid Based on L-S Theory , 2016 .

[61]  Raimund Bürger,et al.  Numerical approximation of oscillatory solutions of hyperbolic-elliptic systems of conservation laws by multiresolution schemes , 2009 .

[62]  H. Yousefi,et al.  Multiresolution based adaptive schemes for second order hyperbolic PDEs in elastodynamic problems , 2013 .

[63]  Wolfgang Dahmen,et al.  Multiresolution schemes for conservation laws , 2001, Numerische Mathematik.

[64]  Jingyang Guo,et al.  A RBF-WENO finite volume method for hyperbolic conservation laws with the monotone polynomial interpolation method , 2017 .

[65]  Gregory E. Fasshauer,et al.  On choosing “optimal” shape parameters for RBF approximation , 2007, Numerical Algorithms.

[66]  Numerical investigation of the propagation of shock waves in rigid porous materials: flow field behavior and parametric study , 1998 .

[67]  M. K. Moallemi,et al.  Experimental evidence of hyperbolic heat conduction in processed meat , 1995 .

[68]  Fred J. Hickernell,et al.  Radial basis function approximations as smoothing splines , 1999, Appl. Math. Comput..

[69]  Bengt Fornberg,et al.  The Runge phenomenon and spatially variable shape parameters in RBF interpolation , 2007, Comput. Math. Appl..

[70]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[71]  Gabriella Puppo,et al.  Compact Central WENO Schemes for Multidimensional Conservation Laws , 1999, SIAM J. Sci. Comput..

[72]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[73]  Magdy A. Ezzat,et al.  The dependence of the modulus of elasticity on reference temperature in generalized thermoelasticity with thermal relaxation , 2004, Appl. Math. Comput..

[74]  S. Osher,et al.  Uniformly high order accuracy essentially non-oscillatory schemes III , 1987 .

[75]  S. Mallik,et al.  Generalized thermoelastic functionally graded solid with a periodically varying heat source , 2007 .

[76]  H. Youssef,et al.  Thermal shock problem of a generalized thermoelastic layered composite material with variable thermal conductivity , 2006 .

[77]  Asadollah Noorzad,et al.  Simulating 2D Waves Propagation in Elastic Solid Media Using Wavelet Based Adaptive Method , 2010, J. Sci. Comput..

[78]  Siegfried Müller,et al.  Adaptive Multiscale Schemes for Conservation Laws , 2002, Lecture Notes in Computational Science and Engineering.

[79]  P. M. Naghdi,et al.  ON UNDAMPED HEAT WAVES IN AN ELASTIC SOLID , 1992 .

[80]  G. Maugin,et al.  Application of Wave-Propagation Algorithm to Two-Dimensional Thermoelastic Wave Propagation in Inhomogeneous Media , 2001 .

[81]  A. Iske,et al.  On the structure of function spaces in optimal recovery of point functionals for ENO-schemes by radial basis functions , 1996 .

[82]  Hamid Reza Ovesy,et al.  Effect of integral viscoelastic core on the nonlinear dynamic behaviour of composite sandwich beams with rectangular cross sections , 2017 .

[83]  I. Bohachevsky,et al.  Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .

[84]  H. Lord,et al.  A GENERALIZED DYNAMICAL THEORY OF THERMOELASTICITY , 1967 .

[85]  A. M. Abd El-Latief,et al.  Exact Solution of Thermoelastic Problem for a One-Dimensional Bar without Energy Dissipation , 2014 .

[86]  Gregory E. Fasshauer,et al.  Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.

[87]  M. Othman,et al.  Reflection of magneto-thermoelasticity waves with temperature dependent properties in generalized thermoelasticity☆ , 2009 .

[88]  Gérard A. Maugin,et al.  Simulation of thermoelastic wave propagation by means of a composite wave-propagation algorithm , 2001 .

[89]  A. Iske,et al.  HIGH ORDER WENO FINITE VOLUME SCHEMES USING POLYHARMONIC SPLINE RECONSTRUCTION , 2006 .

[90]  T. Rabczuk,et al.  Directly Simulation of Second Order Hyperbolic Systems in Second Order Form via the Regularization Concept , 2016 .

[91]  Mats Holmström,et al.  Solving Hyperbolic PDEs Using Interpolating Wavelets , 1999, SIAM J. Sci. Comput..

[92]  R. E. Carlson,et al.  Improved accuracy of multiquadric interpolation using variable shape parameters , 1992 .

[93]  Mehdi Dehghan,et al.  A Meshless Method Using Radial Basis Functions for the Numerical Solution of Two-Dimensional Complex Ginzburg-Landau Equation , 2012 .

[94]  Tianhu He,et al.  Effect of Temperature-Dependent Properties on Thermoelastic Problems with Thermal Relaxations , 2014 .

[95]  S. Mallat A wavelet tour of signal processing , 1998 .

[96]  Jan S. Hesthaven,et al.  Adaptive WENO Methods Based on Radial Basis Function Reconstruction , 2017, J. Sci. Comput..

[97]  Charles A. Micchelli,et al.  A Survey of Optimal Recovery , 1977 .

[98]  X. Tian,et al.  Transient Magneto-Thermoelastic Response for a Semi-Infinite Body with Voids and Variable Material Properties during Thermal Shock , 2011 .

[99]  Kumar K. Tamma,et al.  Computational Approaches With Applications to Non-Classical and Classical Thermomechanical Problems , 1997 .

[100]  Thomas Heuzé,et al.  Lax-Wendroff and TVD finite volume methods for unidimensional thermomechanical numerical simulations of impacts on elastic-plastic solids , 2017, J. Comput. Phys..

[101]  M. Urner Scattered Data Approximation , 2016 .

[102]  Gui-Rong Liu,et al.  An Introduction to Meshfree Methods and Their Programming , 2005 .