Cellular diversity in the Drosophila midbrain revealed by single-cell transcriptomics

To understand the brain, molecular details need to be overlaid onto neural wiring diagrams so that synaptic mode, neuromodulation and critical signaling operations can be considered. Single-cell transcriptomics provide a unique opportunity to collect this information. Here we present an initial analysis of thousands of individual cells from Drosophila midbrain, that were acquired using Drop-Seq. A number of approaches permitted the assignment of transcriptional profiles to several major brain regions and cell-types. Expression of biosynthetic enzymes and reuptake mechanisms allows all the neurons to be typed according to the neurotransmitter or neuromodulator that they produce and presumably release. Some neuropeptides are preferentially co-expressed in neurons using a particular fast-acting transmitter, or monoamine. Neuromodulatory and neurotransmitter receptor subunit expression illustrates the potential of these molecules in generating complexity in neural circuit function. This cell atlas dataset provides an important resource to link molecular operations to brain regions and complex neural processes.

[1]  R. Satija,et al.  Phenotypic Convergence: Distinct Transcription Factors Regulate Common Terminal Features , 2018, Cell.

[2]  Paola Cognigni,et al.  Do the right thing: neural network mechanisms of memory formation, expression and update in Drosophila , 2018, Current Opinion in Neurobiology.

[3]  R. Satija,et al.  Phenotypic convergence in the brain: distinct transcription factors regulate common terminal neuronal characters , 2018, bioRxiv.

[4]  P. Verstreken,et al.  A single-cell catalogue of regulatory states in the ageing Drosophila brain , 2017, bioRxiv.

[5]  Barry J. Dickson,et al.  The VT GAL4, LexA, and split-GAL4 driver line collections for targeted expression in the Drosophila nervous system , 2017, bioRxiv.

[6]  P. Evans,et al.  Behavioral Sensitization to the Disinhibition Effect of Ethanol Requires the Dopamine/Ecdysone Receptor in Drosophila , 2017, Front. Syst. Neurosci..

[7]  S. Waddell,et al.  Resolving the prevalence of somatic transposition in Drosophila , 2017, eLife.

[8]  Louis K. Scheffer,et al.  A connectome of a learning and memory center in the adult Drosophila brain , 2017, eLife.

[9]  Bing Wu,et al.  Classifying Drosophila Olfactory Projection Neuron Subtypes by Single-Cell RNA Sequencing , 2017, Cell.

[10]  L. F. Abbott,et al.  The complete connectome of a learning and memory centre in an insect brain , 2017, Nature.

[11]  Eric T. Trautman,et al.  A Complete Electron Microscopy Volume of the Brain of Adult Drosophila melanogaster , 2017, Cell.

[12]  L. Abbott,et al.  Representations of Novelty and Familiarity in a Mushroom Body Compartment , 2017, Cell.

[13]  Fabian J Theis,et al.  The Human Cell Atlas , 2017, bioRxiv.

[14]  Aljoscha Nern,et al.  The comprehensive connectome of a neural substrate for ‘ON’ motion detection in Drosophila , 2017, eLife.

[15]  Justin Marshall,et al.  Insect-Like Organization of the Stomatopod Central Complex: Functional and Phylogenetic Implications , 2017, Front. Behav. Neurosci..

[16]  William F Tobin,et al.  Wiring variations that enable and constrain neural computation in a sensory microcircuit , 2017, bioRxiv.

[17]  M. Rosbash,et al.  Genome-wide identification of neuronal activity-regulated genes in Drosophila , 2016, eLife.

[18]  Vivek Jayaraman,et al.  Studying small brains to understand the building blocks of cognition , 2016, Current Opinion in Neurobiology.

[19]  J. Parsch,et al.  An Indel Polymorphism in the MtnA 3' Untranslated Region Is Associated with Gene Expression Variation and Local Adaptation in Drosophila melanogaster , 2016, PLoS genetics.

[20]  Johannes Felsenberg,et al.  Memory-Relevant Mushroom Body Output Synapses Are Cholinergic , 2016, Neuron.

[21]  J. Hirsh,et al.  Caffeine promotes wakefulness via dopamine signaling in Drosophila , 2016, Scientific Reports.

[22]  Aravinthan D. T. Samuel,et al.  The wiring diagram of a glomerular olfactory system , 2016, bioRxiv.

[23]  E. Suzuki,et al.  The Matrix Proteins Hasp and Hig Exhibit Segregated Distribution within Synaptic Clefts and Play Distinct Roles in Synaptogenesis , 2016, The Journal of Neuroscience.

[24]  Yoshinori Aso,et al.  Reward signal in a recurrent circuit drives appetitive long-term memory formation , 2015, eLife.

[25]  M. Freeman Drosophila Central Nervous System Glia. , 2015, Cold Spring Harbor perspectives in biology.

[26]  Thomas Preat,et al.  Two independent mushroom body output circuits retrieve the six discrete components of Drosophila aversive memory. , 2015, Cell reports.

[27]  Johannes D. Seelig,et al.  Neural dynamics for landmark orientation and angular path integration , 2015, Nature.

[28]  Evan Z. Macosko,et al.  Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets , 2015, Cell.

[29]  Kristin Branson,et al.  A multilevel multimodal circuit enhances action selection in Drosophila , 2015, Nature.

[30]  K. Venken,et al.  Loss of SPARC dysregulates basal lamina assembly to disrupt larval fat body homeostasis in Drosophila melanogaster , 2015, Developmental dynamics : an official publication of the American Association of Anatomists.

[31]  Scott Waddell,et al.  Sweet Taste and Nutrient Value Subdivide Rewarding Dopaminergic Neurons in Drosophila , 2015, Current Biology.

[32]  A. Regev,et al.  Spatial reconstruction of single-cell gene expression , 2015, Nature Biotechnology.

[33]  F. Jackson,et al.  Comparison of Larval and Adult Drosophila Astrocytes Reveals Stage-Specific Gene Expression Profiles , 2015, G3: Genes, Genomes, Genetics.

[34]  N. Strausfeld,et al.  Genealogical Correspondence of Mushroom Bodies across Invertebrate Phyla , 2015, Current Biology.

[35]  Yoshinori Aso,et al.  Distinct dopamine neurons mediate reward signals for short- and long-term memories , 2014, Proceedings of the National Academy of Sciences.

[36]  G. Rubin,et al.  The neuronal architecture of the mushroom body provides a logic for associative learning , 2014, eLife.

[37]  G. Rubin,et al.  Neuroarchitecture and neuroanatomy of the Drosophila central complex: A GAL4-based dissection of protocerebral bridge neurons and circuits , 2014, The Journal of comparative neurology.

[38]  M. Eddison,et al.  The Drosophila surface glia transcriptome: evolutionary conserved blood-brain barrier processes , 2014, Front. Neurosci..

[39]  C. Hama,et al.  The Matrix Protein Hikaru genki Localizes to Cholinergic Synaptic Clefts and Regulates Postsynaptic Organization in the Drosophila Brain , 2014, The Journal of Neuroscience.

[40]  Dominique A. Glauser,et al.  A Conserved Role for p48 Homologs in Protecting Dopaminergic Neurons from Oxidative Stress , 2014, PLoS genetics.

[41]  Vikram Chandra,et al.  Neural correlates of water reward in thirsty Drosophila , 2014, Nature Neuroscience.

[42]  S. Anton,et al.  The GPCR membrane receptor, DopEcR, mediates the actions of both dopamine and ecdysone to control sex pheromone perception in an insect , 2014, Front. Behav. Neurosci..

[43]  Scott Waddell,et al.  Drosophila Learn Opposing Components of a Compound Food Stimulus , 2014, Current Biology.

[44]  Paul Szyszka,et al.  Converging Circuits Mediate Temperature and Shock Aversive Olfactory Conditioning in Drosophila , 2014, Current Biology.

[45]  R. Bhatnagar,et al.  A draft genome assembly of the army worm, Spodoptera frugiperda. , 2014, Genomics.

[46]  D. Krantz,et al.  Drosophila melanogaster as a genetic model system to study neurotransmitter transporters , 2014, Neurochemistry International.

[47]  Shinya Yamamoto,et al.  Dopamine Dynamics and Signaling in Drosophila: An Overview of Genes, Drugs and Behavioral Paradigms , 2014, Experimental animals.

[48]  G. Fink,et al.  Perivascular adipose tissue contains functional catecholamines , 2014, Pharmacology research & perspectives.

[49]  Ian S. Macdonald,et al.  Hexameric GFP and mCherry Reporters for the Drosophila GAL4, Q, and LexA Transcription Systems , 2014, Genetics.

[50]  Andrew C. Lin,et al.  Different Kenyon Cell Populations Drive Learned Approach and Avoidance in Drosophila , 2013, Neuron.

[51]  Ludo Waltman,et al.  A smart local moving algorithm for large-scale modularity-based community detection , 2013, The European Physical Journal B.

[52]  Louis K. Scheffer,et al.  A visual motion detection circuit suggested by Drosophila connectomics , 2013, Nature.

[53]  J. Knoblich,et al.  FACS purification of Drosophila larval neuroblasts for next-generation sequencing , 2013, Nature Protocols.

[54]  Michael H. Trejo,et al.  The Drosophila BTB Domain Protein Jim Lovell Has Roles in Multiple Larval and Adult Behaviors , 2013, PloS one.

[55]  Kei Ito,et al.  Organization of antennal lobe‐associated neurons in adult Drosophila melanogaster brain , 2012, The Journal of comparative neurology.

[56]  Julie H. Simpson,et al.  A GAL4-driver line resource for Drosophila neurobiology. , 2012, Cell reports.

[57]  Daryl M. Gohl,et al.  Layered reward signaling through octopamine and dopamine in Drosophila , 2012, Nature.

[58]  G. Rubin,et al.  A subset of dopamine neurons signals reward for odour memory in Drosophila , 2012, Nature.

[59]  Yoshinori Aso,et al.  Three Dopamine Pathways Induce Aversive Odor Memories with Different Stability , 2012, PLoS genetics.

[60]  M. Carlsson,et al.  Distribution of metabotropic receptors of serotonin, dopamine, GABA, glutamate, and short neuropeptide F in the central complex of Drosophila , 2012, Neuroscience.

[61]  David R. Kelley,et al.  Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks , 2012, Nature Protocols.

[62]  A. Teleman,et al.  Insulin Signaling Regulates Fatty Acid Catabolism at the Level of CoA Activation , 2012, PLoS genetics.

[63]  Thomas Preat,et al.  Parallel Processing of Appetitive Short- and Long-Term Memories In Drosophila , 2011, Current Biology.

[64]  P. Salvaterra,et al.  Robust RT-qPCR Data Normalization: Validation and Selection of Internal Reference Genes during Post-Experimental Data Analysis , 2011, PloS one.

[65]  Christopher J. Potter,et al.  A versatile in vivo system for directed dissection of gene expression patterns , 2011, Nature Methods.

[66]  D. Nässel,et al.  Drosophila neuropeptides in regulation of physiology and behavior , 2010, Progress in Neurobiology.

[67]  M. O’Connor,et al.  A fat body-derived IGF-like peptide regulates postfeeding growth in Drosophila. , 2009, Developmental cell.

[68]  Ronald L. Davis,et al.  Dynamics of Learning-Related cAMP Signaling and Stimulus Integration in the Drosophila Olfactory Pathway , 2009, Neuron.

[69]  David J. Anderson,et al.  Two Different Forms of Arousal in Drosophila Are Oppositely Regulated by the Dopamine D1 Receptor Ortholog DopR via Distinct Neural Circuits , 2009, Neuron.

[70]  P. Greengard,et al.  Writing Memories with Light-Addressable Reinforcement Circuitry , 2009, Cell.

[71]  Shamik Dasgupta,et al.  A Neural Circuit Mechanism Integrating Motivational State with Memory Expression in Drosophila , 2009, Cell.

[72]  Jing W. Wang,et al.  Presynaptic peptidergic modulation of olfactory receptor neurons in Drosophila , 2009, Proceedings of the National Academy of Sciences.

[73]  Mary A. Logan,et al.  Ensheathing Glia Function as Phagocytes in the Adult Drosophila Brain , 2009, The Journal of Neuroscience.

[74]  D. Nässel,et al.  A large population of diverse neurons in the Drosophila central nervous system expresses short neuropeptide F, suggesting multiple distributed peptide functions , 2008, BMC Neuroscience.

[75]  Kei Ito,et al.  Clonal analysis of Drosophila antennal lobe neurons: diverse neuronal architectures in the lateral neuroblast lineage , 2008, Development.

[76]  G. Rubin,et al.  Tools for neuroanatomy and neurogenetics in Drosophila , 2008, Proceedings of the National Academy of Sciences.

[77]  Kei Ito,et al.  Neuronal assemblies of the Drosophila mushroom body , 2008, The Journal of comparative neurology.

[78]  Pierre Trifilieff,et al.  Intrinsic neurons of Drosophila mushroom bodies express short neuropeptide F: Relations to extrinsic neurons expressing different neurotransmitters , 2008, The Journal of comparative neurology.

[79]  Glenn C. Turner,et al.  Olfactory representations by Drosophila mushroom body neurons. , 2008, Journal of neurophysiology.

[80]  Ramanathan Arvind,et al.  Knot/Collier and Cut Control Different Aspects of Dendrite Cytoskeleton and Synergize to Define Final Arbor Shape , 2007, Neuron.

[81]  F. Jackson,et al.  Drosophila Ebony Activity Is Required in Glia for the Circadian Regulation of Locomotor Activity , 2007, Neuron.

[82]  Ann-Shyn Chiang,et al.  A Map of Olfactory Representation in the Drosophila Mushroom Body , 2007, Cell.

[83]  L. Luo,et al.  Intrinsic Control of Precise Dendritic Targeting by an Ensemble of Transcription Factors , 2007, Current Biology.

[84]  S. Waddell,et al.  Sequential Use of Mushroom Body Neuron Subsets during Drosophila Odor Memory Processing , 2007, Neuron.

[85]  P. Garrity,et al.  Ptpmeg is required for the proper establishment and maintenance of axon projections in the central brain of Drosophila , 2007, Development.

[86]  P. Macdonald,et al.  Imp Associates with Squid and Hrp48 and Contributes to Localized Expression of gurken in the Oocyte , 2006, Molecular and Cellular Biology.

[87]  D. St Johnston,et al.  A repeated IMP-binding motif controls oskar mRNA translation and anchoring independently of Drosophila melanogaster IMP , 2006, The Journal of cell biology.

[88]  M. Freeman,et al.  Glial cell biology in Drosophila and vertebrates , 2006, Trends in Neurosciences.

[89]  J. True,et al.  Drosophila tan Encodes a Novel Hydrolase Required in Pigmentation and Vision , 2005, PLoS genetics.

[90]  Benedict M. Sattelle,et al.  Edit, cut and paste in the nicotinic acetylcholine receptor gene family of Drosophila melanogaster , 2005, BioEssays : news and reviews in molecular, cellular and developmental biology.

[91]  R. Mains,et al.  Drosophila uses two distinct neuropeptide amidating enzymes, dPAL1 and dPAL2 , 2004, Journal of neurochemistry.

[92]  R. Kelley,et al.  The Drosophila roX1 RNA gene can overcome silent chromatin by recruiting the male-specific lethal dosage compensation complex. , 2003, Genetics.

[93]  Junhyong Kim,et al.  Unwrapping Glial Biology Gcm Target Genes Regulating Glial Development, Diversification, and Function , 2003, Neuron.

[94]  M. Heisenberg Mushroom body memoir: from maps to models , 2003, Nature Reviews Neuroscience.

[95]  Gregory S.X.E. Jefferis,et al.  From Lineage to Wiring Specificity POU Domain Transcription Factors Control Precise Connections of Drosophila Olfactory Projection Neurons , 2003, Cell.

[96]  I. Meinertzhagen,et al.  tan and ebony Genes Regulate a Novel Pathway for Transmitter Metabolism at Fly Photoreceptor Terminals , 2002, The Journal of Neuroscience.

[97]  B. Rogina,et al.  Functional characterization and immunolocalization of the transporter encoded by the life-extending gene Indy , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[98]  E. Gundelfinger,et al.  Nicotinic acetylcholine receptors of Drosophila: three subunits encoded by genomically linked genes can co‐assemble 
into the same receptor complex , 2002, Journal of neurochemistry.

[99]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[100]  Ronald L. Davis,et al.  Drosophila fasciclinII Is Required for the Formation of Odor Memories and for Normal Sensitivity to Alcohol , 2001, Cell.

[101]  P. Taghert,et al.  Neuropeptides and neuropeptide receptors in the Drosophila melanogaster genome. , 2001, Genome research.

[102]  E. Hafen,et al.  An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control , 2001, Current Biology.

[103]  R. Mains,et al.  PHM is required for normal developmental transitions and for biosynthesis of secretory peptides in Drosophila. , 2000, Developmental biology.

[104]  W. A. Johnson,et al.  Regulation of central neuron synaptic targeting by the Drosophila POU protein, Acj6. , 2000, Development.

[105]  D. Bertrand,et al.  Neuronal Nicotinic Acetylcholine Receptors from Drosophila , 2000 .

[106]  Kei Ito,et al.  The Drosophila Trio Plays an Essential Role in Patterning of Axons by Regulating Their Directional Extension , 2000, Neuron.

[107]  W. Gehring,et al.  Genetic control of development of the mushroom bodies, the associative learning centers in the Drosophila brain, by the eyeless, twin of eyeless, and Dachshund genes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[108]  L. Luo,et al.  Development of the Drosophila mushroom bodies: sequential generation of three distinct types of neurons from a neuroblast. , 1999, Development.

[109]  A. Sali,et al.  lynx1, an Endogenous Toxin-like Modulator of Nicotinic Acetylcholine Receptors in the Mammalian CNS , 1999, Neuron.

[110]  N. Perrimon,et al.  The Transmembrane Molecule Kekkon 1 Acts in a Feedback Loop to Negatively Regulate the Activity of the Drosophila EGF Receptor during Oogenesis , 1999, Cell.

[111]  I. Dietzel,et al.  The Drosophila ebony gene is closely related to microbial peptide synthetases and shows specific cuticle and nervous system expression. , 1998, Gene.

[112]  R. Davis,et al.  Tripartite mushroom body architecture revealed by antigenic markers. , 1998, Learning & memory.

[113]  Richard Axel,et al.  Genes Expressed in Neurons of Adult Male Drosophila , 1997, Cell.

[114]  D. Yamamoto,et al.  The Drosophila mushroom body is a quadruple structure of clonal units each of which contains a virtually identical set of neurones and glial cells. , 1997, Development.

[115]  R. C. Johnson,et al.  Neuropeptide Amidation in Drosophila: Separate Genes Encode the Two Enzymes Catalyzing Amidation , 1997, The Journal of Neuroscience.

[116]  Ronald L. Davis,et al.  DAMB, a Novel Dopamine Receptor Expressed Specifically in Drosophila Mushroom Bodies , 1996, Neuron.

[117]  P. Salvaterra,et al.  Two Drosophila nervous system antigens, Nervana 1 and 2, are homologous to the beta subunit of Na+,K(+)-ATPase. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[118]  N. Patel,et al.  repo encodes a glial-specific homeo domain protein required in the Drosophila nervous system. , 1994, Genes & development.

[119]  M Heisenberg,et al.  Associative odor learning in Drosophila abolished by chemical ablation of mushroom bodies. , 1994, Science.

[120]  R. Burgess,et al.  Identification and characterization of Drosophila genes for synaptic vesicle proteins , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[121]  K. White,et al.  The locus elav of Drosophila melanogaster is expressed in neurons at all developmental stages. , 1988, Developmental biology.

[122]  B. Nordén,et al.  Characterization of interaction between DNA and 4',6-diamidino-2-phenylindole by optical spectroscopy. , 1987, Biochemistry.

[123]  Augustinus Bradbhaw,et al.  A Draft , 1896 .

[124]  I. Hellmann,et al.  Comparative Analysis of Single-Cell RNA Sequencing Methods. , 2017, Molecular cell.

[125]  Laurens van der Maaten,et al.  Accelerating t-SNE using tree-based algorithms , 2014, J. Mach. Learn. Res..

[126]  Liliane Schoofs,et al.  Neuropeptide biology in Drosophila. , 2010, Advances in experimental medicine and biology.

[127]  S. Nelson,et al.  Dissecting differential gene expression within the circadian neuronal circuit of Drosophila , 2010, Nature Neuroscience.

[128]  E. Albuquerque,et al.  Mammalian nicotinic acetylcholine receptors: from structure to function. , 2009, Physiological reviews.

[129]  Babette Dellen,et al.  Visual Motion Detection , 2009 .

[130]  C. Gundberg Matrix proteins , 2003, Osteoporosis International.