Compound Poisson distributions : properties and estimation

Multivariate compound Poisson distribution is obtained by m p-independent Poisson distributions with a mixing distribution. marginal, conditional probability mass function and moments of comp Poisson distribution when the mixing parameter has a gamma distribu are obtained. The parameters of the mixed distribution are then estirr under a normalized squared error loss. The improved estimators obtained over the unbiased estimators for ' p> = 2, by solving ce difference inequality. Also robustness of the Clevenson-Zidek type estin is shown when the p-distributions are dependent through the m process. Risk simulations studies are obtained to show the amoui improvements.

[1]  E. Lehmann Testing Statistical Hypotheses , 1960 .

[2]  M. Ghosh,et al.  Construction of Improved Estimators in Multiparameter Estimation for Discrete Exponential Families , 1983 .

[3]  E. Lehmann,et al.  Testing Statistical Hypothesis. , 1960 .

[4]  J. Zidek,et al.  Simultaneous Estimation of the Means of Independent Poisson Laws , 1975 .

[5]  Kam-Wah Tsui Robustness of Clevenson-Zidek-Type Estimators , 1984 .

[6]  D. Dey Estimation of scale parameters in mixture distributions , 1990 .

[7]  Kam-Wah Tsui Multiparameter estimation for some multivariate discrete distributions with possibly dependent components , 1986 .

[8]  J. Gurland,et al.  A Class of Distributions Applicable to Accidents , 1961 .

[9]  M. S. Holla,et al.  On a poisson-inverse gaussian distribution , 1967 .

[10]  Jiunn Tzon Hwang,et al.  Improving Upon Standard Estimators in Discrete Exponential Families with Applications to Poisson and Negative Binomial Cases , 1982 .

[11]  Kam-Wah Tsui,et al.  Simultaneous Estimation of Several Poisson Parameters Under $K$-Normalized Squared Error Loss , 1982 .

[12]  P Holgate,et al.  Bivariate generalizations of Neyman's type A distribution. , 1966, Biometrika.

[13]  H. S. Sichel,et al.  Repeat‐Buying and the Generalized Inverse Gaussian–Poisson Distribution , 1982 .

[14]  K. Subrahmaniam,et al.  A Test for “Intrinsic Correlation” in the Theory of Accident Proneness , 1966 .

[15]  Subrahmaniam Kocherlakota On the compounded bivariate Poisson distribution: A unified treatment , 1988 .