Compound Poisson distributions : properties and estimation
暂无分享,去创建一个
[1] E. Lehmann. Testing Statistical Hypotheses , 1960 .
[2] M. Ghosh,et al. Construction of Improved Estimators in Multiparameter Estimation for Discrete Exponential Families , 1983 .
[3] E. Lehmann,et al. Testing Statistical Hypothesis. , 1960 .
[4] J. Zidek,et al. Simultaneous Estimation of the Means of Independent Poisson Laws , 1975 .
[5] Kam-Wah Tsui. Robustness of Clevenson-Zidek-Type Estimators , 1984 .
[6] D. Dey. Estimation of scale parameters in mixture distributions , 1990 .
[7] Kam-Wah Tsui. Multiparameter estimation for some multivariate discrete distributions with possibly dependent components , 1986 .
[8] J. Gurland,et al. A Class of Distributions Applicable to Accidents , 1961 .
[9] M. S. Holla,et al. On a poisson-inverse gaussian distribution , 1967 .
[10] Jiunn Tzon Hwang,et al. Improving Upon Standard Estimators in Discrete Exponential Families with Applications to Poisson and Negative Binomial Cases , 1982 .
[11] Kam-Wah Tsui,et al. Simultaneous Estimation of Several Poisson Parameters Under $K$-Normalized Squared Error Loss , 1982 .
[12] P Holgate,et al. Bivariate generalizations of Neyman's type A distribution. , 1966, Biometrika.
[13] H. S. Sichel,et al. Repeat‐Buying and the Generalized Inverse Gaussian–Poisson Distribution , 1982 .
[14] K. Subrahmaniam,et al. A Test for “Intrinsic Correlation” in the Theory of Accident Proneness , 1966 .
[15] Subrahmaniam Kocherlakota. On the compounded bivariate Poisson distribution: A unified treatment , 1988 .