The 57Fe nuclear magnetic resonance shielding in ferrocene revisited. A density-functional study of orbital energies, shielding mechanisms, and the influence of the exchange-correlation functional

The 57Fe nuclear magnetic resonance (NMR) shielding and chemical shift in ferrocene, Fe(C5H5)2, are studied using density functional theory (DFT) and gauge-including atomic orbitals (GIAO). Electronic factors contributing to the chemical shift are discussed in detail. It is shown that the chemical shift is entirely determined by paramagnetic contributions which in turn are dominated by metal based occupied-virtual d→d couplings. In particular, the HOMO-1(a1′) and the HOMO (e2′) couple with the LUMO (e1″). It is argued that the 57Fe nucleus in ferrocene is less shielded than in the reference compound (iron pentacarbonyl) due to a smaller HOMO-LUMO gap, resulting in stronger interactions between occupied and virtual orbitals. The influence of the XC functional on the calculated molecular orbital (MO) energies of frontier orbitals is discussed. Different generalized gradient approximations (GGA) give similar results whereas hybrid functionals that incorporate part of the Hartree–Fock exchange stabilize occup...

[1]  A. Haaland Molecular structure and bonding in the 3d metallocenes , 1979 .

[2]  G. Schreckenbach,et al.  Density functional calculations of NMR chemical shifts and ESR g-tensors , 1998 .

[3]  G. Schreckenbach,et al.  The calculation of NMR shielding tensors based on density functional theory and the frozen‐core approximation , 1996 .

[4]  P. Pickup,et al.  Design of low band gap polymers employing density functional theory—hybrid functionals ameliorate band gap problem , 1997 .

[5]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[6]  Nicholas C. Handy,et al.  The development of new exchange-correlation functionals , 1998 .

[7]  Tom Ziegler,et al.  Calculation of DFT-GIAO NMR shifts with the inclusion of spin-orbit coupling , 1998 .

[8]  T. Ziegler Approximate Density Functional Theory as a Practical Tool in Molecular Energetics and Dynamics , 1991 .

[9]  Dieter Cremer,et al.  Sum‐over‐states density functional perturbation theory: Prediction of reliable 13C, 15N, and 17O nuclear magnetic resonance chemical shifts , 1996 .

[10]  N. N. Greenwood,et al.  Chemistry of the elements , 1984 .

[11]  R. Leeuwen,et al.  Molecular exchange‐correlation Kohn–Sham potential and energy density from ab initio first‐ and second‐order density matrices: Examples for XH (X=Li, B, F) , 1996 .

[12]  M. Bühl,et al.  The DFT route to NMR chemical shifts , 1999, J. Comput. Chem..

[13]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[14]  M. Bühl SUBSTITUENT EFFECTS ON 103RH NMR CHEMICAL SHIFTS AND REACTIVITIES. A DENSITY FUNCTIONAL STUDY , 1997 .

[15]  Krishnan Raghavachari,et al.  Gaussian-2 theory for molecular energies of first- and second-row compounds , 1991 .

[16]  Y. Ruiz-Morales,et al.  Theoretical Study of 13C and 17O NMR Shielding Tensors in Transition Metal Carbonyls Based on Density Functional Theory and Gauge-Including Atomic Orbitals , 1996 .

[17]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[18]  Evert Jan Baerends,et al.  Self-consistent molecular Hartree—Fock—Slater calculations I. The computational procedure , 1973 .

[19]  Dennis R. Salahub,et al.  Calculations of NMR shielding constants by uncoupled density functional theory , 1993 .

[20]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[21]  P. Politzer,et al.  A comparative analysis of Hartree-Fock and Kohn-Sham orbital energies , 1998 .

[22]  M. Bühl Density functional computations of transition metal NMR chemical shifts: dramatic effects of Hartree-Fock exchange , 1997 .

[23]  A. Jameson,et al.  Concurrent 19F and 77Se or 19F and 125Te NMR T1 measurements for determination of 77Se and 125Te absolute shielding scales , 1987 .

[24]  Dennis R. Salahub,et al.  NUCLEAR MAGNETIC RESONANCE SHIELDING TENSORS CALCULATED WITH A SUM-OVER-STATES DENSITY FUNCTIONAL PERTURBATION THEORY , 1994 .

[25]  T. Keith,et al.  A comparison of models for calculating nuclear magnetic resonance shielding tensors , 1996 .

[26]  Claudia Filippi,et al.  Comparison of exact and approximate density functionals for an exactly soluble model , 1994 .

[27]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[28]  Benny G. Johnson,et al.  The performance of a family of density functional methods , 1993 .

[29]  Martin Kaupp,et al.  The calculation of 17O chemical shielding in transition metal oxo complexes. I. Comparison of DFT and ab initio approaches, and mechanisms of relativity-induced shielding , 1997 .

[30]  L. Curtiss,et al.  Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation , 1997 .

[31]  P. Jeffrey Hay,et al.  Gaussian basis sets for molecular calculations. The representation of 3d orbitals in transition‐metal atoms , 1977 .

[32]  E. J. Baerends,et al.  Kohn-Sham potentials corresponding to Slater and Gaussian basis set densities , 1997 .

[33]  C. Umrigar,et al.  Accurate exchange-correlation potentials and total-energy components for the helium isoelectronic series. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[34]  Evert Jan Baerends,et al.  Roothaan-Hartree-Fock-Slater atomic wave functions , 1981 .

[35]  C. Elschenbroich Organometallics: A Concise Introduction , 1989 .

[36]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[37]  E. Baerends,et al.  Self-consistent molecular Hartree—Fock—Slater calculations II. The effect of exchange scaling in some small molecules , 1973 .

[38]  C. Ballhausen,et al.  Introduction to Ligand Field Theory , 1962 .

[39]  A. Becke Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals , 1997 .

[40]  E. Baerends,et al.  Dissociating energies, vibrational frequencies and 13C NMR chemical shifts of the 18 electron species [M(CO)6]n (M=Hf-Ir, Mo, Tc, Ru, Cr, Mn, Fe). A density functional study. , 1997 .

[41]  G. Seifert,et al.  Nuclear magnetic shielding in molecules. The application of GIAO's in LCAO-Xα-calculations , 1990 .

[42]  D. Salahub,et al.  Calculations of NMR shielding constants beyond uncoupled density functional theory. IGLO approach , 1993 .

[43]  M. Bühl CORRELATION BETWEEN 51V NMR CHEMICAL SHIFT AND REACTIVITY OF OXOVANADIUM(V) CATALYSTS FOR ETHYLENE POLYMERIZATION , 1998 .

[44]  R. Mcweeny,et al.  Methods Of Molecular Quantum Mechanics , 1969 .

[45]  Nicholas C. Handy,et al.  The density functional calculation of nuclear shielding constants using London atomic orbitals , 1995 .

[46]  D. Yarkony,et al.  Modern Electronic Structure Theory: Part I , 1995 .

[47]  Evert Jan Baerends,et al.  A Quantum Chemical View of Density Functional Theory , 1997 .

[48]  Yosadara Ruiz-Morales,et al.  Calculation of125Te Chemical Shifts Using Gauge-Including Atomic Orbitals and Density Functional Theory , 1997 .

[49]  Guntram Rauhut,et al.  Comparison of NMR Shieldings Calculated from Hartree−Fock and Density Functional Wave Functions Using Gauge-Including Atomic Orbitals , 1996 .

[50]  Peter Pulay,et al.  Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations , 1990 .

[51]  A. Dios Ab initio Calculations of the NMR Chemical Shift , 1996 .

[52]  S. McGlynn Introduction to applied quantum chemistry , 1971 .

[53]  P. Schleyer Encyclopedia of computational chemistry , 1998 .

[54]  Cynthia J. Jameson Gas-phase NMR spectroscopy , 1991 .

[55]  Brian B. Laird,et al.  Chemical Applications of Density-Functional Theory , 1996 .

[56]  Nicholas C. Handy,et al.  Exchange‐correlation potentials , 1996 .

[57]  Tom Ziegler The 1994 Alcan Award Lecture Density functional theory as a practical tool in studies of organometallic energetics and kinetics. Beating the heavy metal blues with DFT , 1995 .

[58]  Trygve Helgaker,et al.  Ab Initio Methods for the Calculation of NMR Shielding and Indirect Spin-Spin Coupling Constants , 1999 .

[59]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[60]  Evert Jan Baerends,et al.  Numerical integration for polyatomic systems , 1992 .

[61]  Y. Ruiz-Morales,et al.  A THEORETICAL STUDY OF 31P AND 95MO NMR CHEMICAL SHIFTS IN M(CO)5PR3 (M = CR, MO; R = H, CH3, C6H5, F, AND CL) BASED ON DENSITY FUNCTIONAL THEORY AND GAUGE-INCLUDING ATOMIC ORBITALS , 1998 .

[62]  M. Bühl,et al.  Computations of 57Fe-NMR Chemical Shifts with the SOS-DFPT Method , 1996 .

[63]  Georg Schreckenbach,et al.  Calculation of NMR shielding tensors based on density functional theory and a scalar relativistic Pauli-type Hamiltonian. The application to transition metal complexes , 1997 .

[64]  Nicholas C. Handy,et al.  Development of New Exchange-Correlation Functionals. 2 , 1998 .

[65]  Evert Jan Baerends,et al.  Density functional calculations of nuclear magnetic shieldings using the zeroth-order regular approximation (ZORA) for relativistic effects: ZORA nuclear magnetic resonance , 1999 .

[66]  G. Schreckenbach,et al.  Calculation of NMR Shielding Tensors Using Gauge-Including Atomic Orbitals and Modern Density Functional Theory , 1995 .

[67]  Warren J. Hehre,et al.  AB INITIO Molecular Orbital Theory , 1986 .

[68]  P. Siegbahn,et al.  The effect of electron correlation on the metal-ligand interaction in iron pentacarbonyl (Fe(CO)5) , 1985 .

[69]  G. Schreckenbach,et al.  Origin of the Hydridic 1H NMR Chemical Shift in Low-Valent Transition-Metal Hydrides , 1996 .

[70]  R. Leeuwen,et al.  Exchange-correlation potential with correct asymptotic behavior. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[71]  Raymond A. Poirier,et al.  Accurate Method for Obtaining Band Gaps in Conducting Polymers Using a DFT/Hybrid Approach , 1998 .

[72]  F. Hamprecht,et al.  Theoretical investigations of NMR chemical shifts and reactivities of oxovanadium(v) compounds , 1998, J. Comput. Chem..

[73]  F. London,et al.  Théorie quantique des courants interatomiques dans les combinaisons aromatiques , 1937 .

[74]  A. Wachters,et al.  Gaussian Basis Set for Molecular Wavefunctions Containing Third‐Row Atoms , 1970 .

[75]  Enrico Clementi,et al.  Methods and techniques in computational chemistry : METECC-95 , 1995 .

[76]  R. Ditchfield,et al.  Self-consistent perturbation theory of diamagnetism , 1974 .