Constructing Pairing-Friendly Elliptic Curves with Embedding Degree 10

Non-supersingular curves are useful to improve the security of pairing-based cryptosystems. The method proposed by Brezing and Weng is computational inexpensive which can build suitable non-supersingular elliptic curves for pairing-based cryptosystems when the embedding degree is larger than 6. In this paper we propose a new method which extends Brezing and Weng’s method to generate more non-supersingular elliptic curves suitable for pairing-based cryptosystems. Furthermore, we show how our proposed method can be used in the method proposed by Scott and Barreto. Some examples are given to show that new non-supersingular curves can be built.

[1]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[2]  Joseph H. Silverman,et al.  The arithmetic of elliptic curves , 1986, Graduate texts in mathematics.

[3]  Alfred Menezes,et al.  Reducing elliptic curve logarithms to logarithms in a finite field , 1993, IEEE Trans. Inf. Theory.

[4]  Badan Pusat,et al.  Selected References , 1986 .

[5]  Hovav Shacham,et al.  Short Signatures from the Weil Pairing , 2001, J. Cryptol..

[6]  Paulo S. L. M. Barreto,et al.  Efficient Algorithms for Pairing-Based Cryptosystems , 2002, CRYPTO.

[7]  Frederik Vercauteren,et al.  A comparison of MNT curves and supersingular curves , 2006, Applicable Algebra in Engineering, Communication and Computing.

[8]  Alfred Menezes,et al.  Reducing elliptic curve logarithms to logarithms in a finite field , 1991, STOC '91.

[9]  Igor E. Shparlinski,et al.  Elliptic Curves with Low Embedding Degree , 2006, Journal of Cryptology.

[10]  Don Coppersmith,et al.  Fast evaluation of logarithms in fields of characteristic two , 1984, IEEE Trans. Inf. Theory.

[11]  J. Neukirch Algebraic Number Theory , 1999 .

[12]  François Morain Building Elliptic Curves Modulo Large Primes , 1991, EUROCRYPT.

[13]  Paulo S. L. M. Barreto,et al.  Generating More MNT Elliptic Curves , 2006, Des. Codes Cryptogr..

[14]  A. Miyaji,et al.  New Explicit Conditions of Elliptic Curve Traces for FR-Reduction , 2001 .

[15]  Annegret Weng,et al.  Elliptic Curves Suitable for Pairing Based Cryptography , 2005, Des. Codes Cryptogr..

[16]  Andreas Enge,et al.  Building Curves with Arbitrary Small MOV Degree over Finite Prime Fields , 2004, Journal of Cryptology.

[17]  Donald W. Davies,et al.  Advances in Cryptology — EUROCRYPT ’91 , 2001, Lecture Notes in Computer Science.

[18]  Andrew M. Odlyzko,et al.  Discrete Logarithms: The Past and the Future , 2000, Des. Codes Cryptogr..

[19]  Paulo S. L. M. Barreto,et al.  Pairing-Friendly Elliptic Curves of Prime Order , 2005, Selected Areas in Cryptography.

[20]  R. Mollin Fundamental number theory with applications , 1998 .

[21]  Nigel P. Smart,et al.  Advances in Elliptic Curve Cryptography (London Mathematical Society Lecture Note Series) , 2005 .

[22]  R. Balasubramanian,et al.  The Improbability That an Elliptic Curve Has Subexponential Discrete Log Problem under the Menezes—Okamoto—Vanstone Algorithm , 1998, Journal of Cryptology.

[23]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[24]  Matthew K. Franklin,et al.  Identity-Based Encryption from the Weil Pairing , 2001, CRYPTO.

[25]  Steven D. Galbraith,et al.  Ordinary abelian varieties having small embedding degree , 2007, Finite Fields Their Appl..

[26]  Ian F. Blake,et al.  Elliptic curves in cryptography , 1999 .

[27]  Antoine Joux,et al.  A One Round Protocol for Tripartite Diffie–Hellman , 2000, Journal of Cryptology.

[28]  A. Atkin,et al.  ELLIPTIC CURVES AND PRIMALITY PROVING , 1993 .

[29]  Paulo S. L. M. Barreto,et al.  Constructing Elliptic Curves with Prescribed Embedding Degrees , 2002, SCN.

[30]  Moti Yung,et al.  Advances in Cryptology — CRYPTO 2002 , 2002, Lecture Notes in Computer Science.

[31]  D. Freeman Constructing Families of Pairing-Friendly Elliptic Curves , 2005 .

[32]  Paulo S. L. M. Barreto,et al.  Efficient Implementation of Pairing-Based Cryptosystems , 2004, Journal of Cryptology.