On the spectral asymptotics for the buckling problem

Abstract. We provide a direct proof of Weyl’s law for the buckling eigenvalues of the biharmonic operator on a wide class of domains of R including bounded Lipschitz domains. The proof relies on asymptotically sharp lower and upper bounds that we develop for the Riesz mean R2(z). Lower bounds are obtained by making use of the so-called “averaged variational principle”. Upper bounds are obtained in the spirit of Berezin-Li-Yau. Moreover, we state a conjecture for the second term inWeyl’s law and prove its correctness in two special cases: balls in R and bounded intervals in R.

[1]  Rupert L. Frank,et al.  Two-term spectral asymptotics for the Dirichlet Laplacian on a bounded domain , 2011, 1105.5182.

[2]  G. V. Rozenbljum ON THE EIGENVALUES OF THE FIRST BOUNDARY VALUE PROBLEM IN UNBOUNDED DOMAINS , 1972 .

[3]  R. Frank,et al.  Semi-classical analysis of the Laplace operator with Robin boundary conditions , 2012, 1208.2327.

[4]  E. Harrell,et al.  Complementary Asymptotically Sharp Estimates for Eigenvalue Means of Laplacians , 2018, International Mathematics Research Notices.

[5]  Howard A. Levine,et al.  Unrestricted lower bounds for eigenvalues for classes of elliptic equations and systems of equations with applications to problems in elasticity , 1985 .

[6]  A. Laptev,et al.  Recent results on Lieb-Thirring inequalities , 2000 .

[7]  V. Kozlov Estimates of the remainder in formulas for the asymptotic behavior of the spectrum for linear operator bundles , 1983 .

[8]  L. Friedlander Remarks on the Membrane and Buckling Eigenvalues for Planar Domains , 2004 .

[9]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[10]  F. Berezin COVARIANT AND CONTRAVARIANT SYMBOLS OF OPERATORS , 1972 .

[11]  Ari Laptev,et al.  Dirichlet and Neumann Eigenvalue Problems on Domains in Euclidean Spaces , 1997 .

[12]  R. Frank,et al.  Two-term spectral asymptotics for the Dirichlet Laplacian in a Lipschitz domain , 2019, Journal für die reine und angewandte Mathematik (Crelles Journal).

[13]  Yu Safarov,et al.  The Asymptotic Distribution of Eigenvalues of Partial Differential Operators , 1996 .

[14]  Å. Pleijel,et al.  On the eigenvalues and eigenfunctions of elastic plates , 1950 .

[15]  Q. Cheng,et al.  Universal Bounds for Eigenvalues of a Buckling Problem , 2009, 0908.3745.

[16]  Shmuel Agmon,et al.  On kernels, eigenvalues, and eigenfunctions of operators related to elliptic problems , 1965 .

[17]  J. Stubbe,et al.  On sums of graph eigenvalues , 2013, 1308.5340.

[18]  I. M. Pyshik,et al.  Table of integrals, series, and products , 1965 .

[19]  Shing-Tung Yau,et al.  On the Schrödinger equation and the eigenvalue problem , 1983 .

[20]  Interlacing of positive real zeros of Bessel functions , 2010, 1002.0976.

[21]  G. Pólya,et al.  ON THE RATIO OF CONSECUTIVE EIGENVALUES , 1956 .

[22]  D. Buoso,et al.  Semiclassical bounds for spectra of biharmonic operators. , 2019, 1904.11877.

[23]  Genqiang Liu Some inequalities and asymptotic formulas for eigenvalues on Riemannian manifolds , 2009, 0906.2043.

[24]  Marius Mitrea,et al.  Spectral theory for perturbed Krein Laplacians in nonsmooth domains , 2009, 0907.1442.

[25]  E. Harrell,et al.  On sums of eigenvalues of elliptic operators on manifolds , 2015, 1507.02632.

[26]  L. Geisinger,et al.  A short proof of Weyl's law for fractional differential operators , 2013, 1309.1867.

[27]  D. Buoso,et al.  A few shape optimization results for a biharmonic Steklov problem , 2015, 1503.05828.

[28]  L. Payne,et al.  Inequalities for Eigenvalues of Membranes and Plates , 1955 .

[29]  L. Hermi,et al.  A unified approach to universal inequalities for eigenvalues of elliptic operators , 2004 .

[30]  L. Hörmander,et al.  THE ASYMPTOTIC DISTRIBUTION OF EIGENVALUES OF PARTIAL DIFFERENTIAL OPERATORS (Translations of Mathematical Monographs 155) , 1998 .