The SIESTA method for ab initio order-N materials simulation

We have developed and implemented a selfconsistent density functional method using standard norm-conserving pseudopotentials and a flexible, numerical linear combination of atomic orbitals basis set, which includes multiple-zeta and polarization orbitals. Exchange and correlation are treated with the local spin density or generalized gradient approximations. The basis functions and the electron density are projected on a real-space grid, in order to calculate the Hartree and exchange-correlation potentials and matrix elements, with a number of operations that scales linearly with the size of the system. We use a modified energy functional, whose minimization produces orthogonal wavefunctions and the same energy and density as the Kohn-Sham energy functional, without the need for an explicit orthogonalization. Additionally, using localized Wannier-like electron wavefunctions allows the computation time and memory required to minimize the energy to also scale linearly with the size of the system. Forces and stresses are also calculated efficiently and accurately, thus allowing structural relaxation and molecular dynamics simulations.

[1]  Walter Kohn,et al.  Analytic Properties of Bloch Waves and Wannier Functions , 1959 .

[2]  N. Mermin Thermal Properties of the Inhomogeneous Electron Gas , 1965 .

[3]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[4]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[5]  A R Plummer,et al.  Introduction to Solid State Physics , 1967 .

[6]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[7]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[8]  Eleftherios N. Economou,et al.  Green's functions in quantum physics , 1979 .

[9]  D. Hamann,et al.  Norm-Conserving Pseudopotentials , 1979 .

[10]  L. Kleinman Relativistic norm-conserving pseudopotential , 1980 .

[11]  P. Pulay Convergence acceleration of iterative sequences. the case of scf iteration , 1980 .

[12]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[13]  M. Schlüter,et al.  Relativistic norm-conserving pseudopotentials , 1982 .

[14]  Steven G. Louie,et al.  Nonlinear ionic pseudopotentials in spin-density-functional calculations , 1982 .

[15]  Leonard Kleinman,et al.  Efficacious Form for Model Pseudopotentials , 1982 .

[16]  P. Pulay Improved SCF convergence acceleration , 1982 .

[17]  D. R. Hamann,et al.  Pseudopotentials that work: From H to Pu , 1982 .

[18]  M. Böhm S. Huzinaga (Ed.): Gaussian Basis Sets for Molecular Calculations, Vol. 16 aus: Physical Sciences Data, Elsevier Scientific Publ. Comp., Amsterdam, Oxford, New York, Tokyo 1984. 426 Seiten. Preis: Dfl. 265,–. , 1984 .

[19]  Harris Simplified method for calculating the energy of weakly interacting fragments. , 1985, Physical review. B, Condensed matter.

[20]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[21]  D. Vanderbilt,et al.  Optimally smooth norm-conserving pseudopotentials. , 1985, Physical review. B, Condensed matter.

[22]  L. Sandratskii,et al.  Symmetrised method for the calculation of the band structure of noncollinear magnets , 1986 .

[23]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[24]  K. Binder,et al.  Monte Carlo Simulation in Statistical Physics , 1992, Graduate Texts in Physics.

[25]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[26]  J. Kübler,et al.  Local spin‐density functional theory of noncollinear magnetism (invited) , 1988 .

[27]  Foulkes,et al.  Tight-binding models and density-functional theory. , 1989, Physical review. B, Condensed matter.

[28]  O. Sankey,et al.  Ab initio multicenter tight-binding model for molecular-dynamics simulations and other applications in covalent systems. , 1989, Physical review. B, Condensed matter.

[29]  R. Dreizler,et al.  Density-Functional Theory , 1990 .

[30]  William H. Press,et al.  Numerical recipes , 1990 .

[31]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[32]  Blöchl,et al.  Generalized separable potentials for electronic-structure calculations. , 1990, Physical review. B, Condensed matter.

[33]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[34]  Bruce W. Suter,et al.  Fast Nth-order Hankel transform algorithm , 1991, IEEE Trans. Signal Process..

[35]  Read,et al.  Calculation of optical matrix elements with nonlocal pseudopotentials. , 1991, Physical review. B, Condensed matter.

[36]  Scheffler,et al.  Analysis of separable potentials. , 1991, Physical review. B, Condensed matter.

[37]  Soler,et al.  Optimal meshes for integrals in real- and reciprocal-space unit cells. , 1992, Physical review. B, Condensed matter.

[38]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[39]  Car,et al.  Orbital formulation for electronic-structure calculations with linear system-size scaling. , 1993, Physical review. B, Condensed matter.

[40]  D. Vanderbilt,et al.  Theory of polarization of crystalline solids. , 1993, Physical review. B, Condensed matter.

[41]  Martin,et al.  Unconstrained minimization approach for electronic computations that scales linearly with system size. , 1993, Physical review. B, Condensed matter.

[42]  E. Hashish,et al.  The fast Hankel transform1 , 1994 .

[43]  L Greengard,et al.  Fast Algorithms for Classical Physics , 1994, Science.

[44]  Raffaele Resta,et al.  MACROSCOPIC POLARIZATION IN CRYSTALLINE DIELECTRICS : THE GEOMETRIC PHASE APPROACH , 1994 .

[45]  M. S. Singh,et al.  All-electron local-density and generalized-gradient calculations of the structural properties of semiconductors. , 1994, Physical review. B, Condensed matter.

[46]  Hernández,et al.  Self-consistent first-principles technique with linear scaling. , 1995, Physical review. B, Condensed matter.

[47]  Payne,et al.  Periodic boundary conditions in ab initio calculations. , 1995, Physical review. B, Condensed matter.

[48]  Kim,et al.  Total-energy global optimizations using nonorthogonal localized orbitals. , 1995, Physical review. B, Condensed matter.

[49]  Martin,et al.  Linear system-size scaling methods for electronic-structure calculations. , 1995, Physical review. B, Condensed matter.

[50]  George F. Bertsch,et al.  Time-dependent local-density approximation in real time , 1996 .

[51]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[52]  M. Parrinello,et al.  Response Function Basis Sets: Application to Density Functional Calculations , 1996 .

[53]  Soler,et al.  Self-consistent order-N density-functional calculations for very large systems. , 1996, Physical review. B, Condensed matter.

[54]  D. Sánchez-Portal,et al.  Analysis of atomic orbital basis sets from the projection of plane-wave results , 1995, cond-mat/9509053.

[55]  M. Petersilka,et al.  DENSITY FUNCTIONAL THEORY OF TIME-DEPENDENT PHENOMENA , 1996 .

[56]  Roberto Dovesi,et al.  Spontaneous polarization as a Berry phase of the Hartree-Fock wave function: The case of KNbO 3 , 1997 .

[57]  David R. Bowler,et al.  Tight-binding modelling of materials , 1997 .

[58]  Daniel Sánchez-Portal,et al.  Density‐functional method for very large systems with LCAO basis sets , 1997 .

[59]  Designed nonlocal pseudopotentials for enhanced transferability , 1997, cond-mat/9711163.

[60]  Alfredo Pasquarello,et al.  Fully Unconstrained Approach to Noncollinear Magnetism: Application to Small Fe Clusters , 1998 .

[61]  Ronald E. Cohen,et al.  First-Principles Study of Piezoelectricity in PbTiO 3 , 1998 .

[62]  Liang Fu,et al.  Macroscopic polarization as a discrete Berry phase of the Hartree-Fock wave function: The single-point limit , 1998 .

[63]  Pablo Ordejón,et al.  Order-N tight-binding methods for electronic-structure and molecular dynamics , 1998 .

[64]  Richard M. Martin,et al.  Improved accuracy and acceleration of variational order-N electronic-structure computations by projection techniques , 1998 .

[65]  S. Goedecker Linear scaling electronic structure methods , 1999 .

[66]  Emilio Artacho,et al.  LINEAR-SCALING AB-INITIO CALCULATIONS FOR LARGE AND COMPLEX SYSTEMS , 1999 .

[67]  Alfredo Dubra,et al.  Fast Hankel transform of nth order , 1999 .

[68]  David Vanderbilt Berry-phase theory of proper piezoelectric response , 1999 .

[69]  P. Ordejón Linear Scaling ab initio Calculations in Nanoscale Materials with SIESTA , 2000 .

[70]  D. Sánchez-Portal,et al.  Numerical atomic orbitals for linear-scaling calculations , 2001, cond-mat/0104170.

[71]  J. Junquera,et al.  Ab initio local vibrational modes of light impurities in silicon , 2001, cond-mat/0109306.