Observation of individual microtubule motor steps in living cells with endocytosed quantum dots.

We report the observation of individual steps taken by motor proteins in living cells by following movements of endocytic vesicles that contain quantum dots (QDs) with a fast camera. The brightness and photostability of quantum dots allow us to record motor displacement traces with 300 micros time resolution and 1.5 nm spatial precision. We observed individual 8 nm steps in active transport toward both the microtubule plus- and minus-ends, the directions of kinesin and dynein movements, respectively. In addition, we clearly resolved abrupt 16 nm steps in the plus-end direction and often consecutive 16 nm and occasional 24 nm steps in minus-end directed movements. This work demonstrates the ability of the QD assay to probe the operation of motor proteins at the molecular level in living cells under physiological conditions.

[1]  J. Gelles,et al.  Coupling of kinesin steps to ATP hydrolysis , 1997, Nature.

[2]  S. Burgess,et al.  Is the dynein motor a winch? , 2004, Current opinion in structural biology.

[3]  J. Howard,et al.  Mechanics of Motor Proteins and the Cytoskeleton , 2001 .

[4]  E. Krementsova,et al.  Differential labeling of myosin V heads with quantum dots allows direct visualization of hand-over-hand processivity. , 2005, Biophysical journal.

[5]  J. Matthew Mauro,et al.  Long-term multiple color imaging of live cells using quantum dot bioconjugates , 2003, Nature Biotechnology.

[6]  Steven M. Block,et al.  Kinesin Moves by an Asymmetric Hand-OverHand Mechanism , 2003 .

[7]  B. C. Carter,et al.  Cytoplasmic dynein functions as a gear in response to load , 2004, Nature.

[8]  S. Burgess,et al.  The structure of dynein-c by negative stain electron microscopy. , 2004, Journal of structural biology.

[9]  R. Vale,et al.  Kinesin Walks Hand-Over-Hand , 2004, Science.

[10]  Steven P Gross,et al.  Developmental Regulation of Vesicle Transport in Drosophila Embryos: Forces and Kinetics , 1998, Cell.

[11]  M. Schliwa,et al.  Molecular motors , 2003, Nature.

[12]  H. Mattoussi,et al.  Use of quantum dots for live cell imaging , 2004, Nature Methods.

[13]  Paul R. Selvin,et al.  Kinesin and Dynein Move a Peroxisome in Vivo: A Tug-of-War or Coordinated Movement? , 2005, Science.

[14]  C. Echeverri,et al.  Overexpression of the Dynamitin (p50) Subunit of the Dynactin Complex Disrupts Dynein-dependent Maintenance of Membrane Organelle Distribution , 1997, The Journal of cell biology.

[15]  S. King,et al.  AAA domains and organization of the dynein motor unit. , 2000, Journal of cell science.

[16]  S. Gross Dynactin: Coordinating Motors with Opposite Inclinations , 2003, Current Biology.

[17]  Taekjip Ha,et al.  Near-complete suppression of quantum dot blinking in ambient conditions. , 2004, Journal of the American Chemical Society.

[18]  Shinsuke Sando,et al.  A quantum dot conjugated sugar ball and its cellular uptake. On the size effects of endocytosis in the subviral region. , 2004, Journal of the American Chemical Society.

[19]  Paul R Selvin,et al.  Molecular motors one at a time: FIONA to the rescue , 2005, Journal of physics. Condensed matter : an Institute of Physics journal.

[20]  S. Nie,et al.  Quantum Dot Nanocrystals for In Vivo Molecular and Cellular Imaging¶ , 2004 .

[21]  Paul R. Selvin,et al.  Myosin V Walks Hand-Over-Hand: Single Fluorophore Imaging with 1.5-nm Localization , 2003, Science.

[22]  R. A. Kennedy,et al.  Forward-backward non-linear filtering technique for extracting small biological signals from noise , 1991, Journal of Neuroscience Methods.

[23]  T. Schroer,et al.  Dynactin increases the processivity of the cytoplasmic dynein motor , 1999, Nature Cell Biology.

[24]  N. Hirokawa,et al.  KIFC3, a microtubule minus end–directed motor for the apical transport of annexin XIIIb–associated Triton-insoluble membranes , 2001, The Journal of cell biology.

[25]  S. Burgess,et al.  Dynein structure and power stroke , 2003, Nature.

[26]  R. Vale,et al.  The load dependence of kinesin's mechanical cycle. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[27]  K. Schütze,et al.  Force generation of organelle transport measured in vivo by an infrared laser trap , 1990, Nature.

[28]  S. Nie,et al.  Quantum dot bioconjugates for ultrasensitive nonisotopic detection. , 1998, Science.

[29]  S. Burgess,et al.  Use of negative stain and single-particle image processing to explore dynamic properties of flexible macromolecules. , 2004, Journal of structural biology.

[30]  D. Hackney,et al.  The kinetic cycles of myosin, kinesin, and dynein. , 1996, Annual review of physiology.

[31]  D. Wirtz,et al.  Mechanics of living cells measured by laser tracking microrheology. , 2000, Biophysical journal.

[32]  M. Schnitzer,et al.  Force production by single kinesin motors , 2000, Nature Cell Biology.

[33]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[34]  W. Webb,et al.  Precise nanometer localization analysis for individual fluorescent probes. , 2002, Biophysical journal.