Chapter 4 – Area Patterning of the Mammalian Cortex

[1]  Michael Levine,et al.  Dorsal gradient networks in the Drosophila embryo. , 2002, Developmental biology.

[2]  S. Mcconnell,et al.  Fezl regulates the differentiation and axon targeting of layer 5 subcortical projection neurons in cerebral cortex. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Susan Lindsay,et al.  Investigating gradients of gene expression involved in early human cortical development , 2010, Journal of anatomy.

[4]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[5]  J. Rubenstein,et al.  Regionalization of the prosencephalic neural plate. , 1998, Annual review of neuroscience.

[6]  E. Cherubini,et al.  Generating diversity at GAB Aergic synapses , 2001, Trends in Neurosciences.

[7]  G. Fishell,et al.  The caudal ganglionic eminence is a source of distinct cortical and subcortical cell populations , 2002, Nature Neuroscience.

[8]  D. O'Leary,et al.  Distinct Actions of Emx1, Emx2, andPax6 in Regulating the Specification of Areas in the Developing Neocortex , 2002, The Journal of Neuroscience.

[9]  D. O'Leary,et al.  Development of the cerebral cortex: Mechanisms controlling cell fate, laminar and areal patterning, and axonal connectivity , 2009 .

[10]  Karla E. Hirokawa,et al.  Lhx2 Selector Activity Specifies Cortical Identity and Suppresses Hippocampal Organizer Fate , 2008, Science.

[11]  Chunjie Zhao,et al.  A transgenic marker mouse line labels Cajal–Retzius cells from the cortical hem and thalamocortical axons , 2006, Brain Research.

[12]  P. Rakic Evolution of the neocortex: Perspective from developmental biology , 2010 .

[13]  Henry Kennedy,et al.  Maturation and connectivity of the visual cortex in monkey is altered by prenatal removal of retinal input , 1989, Nature.

[14]  Lu Lu,et al.  Genetic analysis of posterior medial barrel subfield (PMBSF) size in somatosensory cortex (SI) in recombinant inbred strains of mice , 2008, BMC Neuroscience.

[15]  D. O'Leary,et al.  Graded and Areal Expression Patterns of Regulatory Genes and Cadherins in Embryonic Neocortex Independent of Thalamocortical Input , 1999, The Journal of Neuroscience.

[16]  J. D. Macklis,et al.  Development, specification, and diversity of callosal projection neurons , 2011, Trends in Neurosciences.

[17]  O. Britanova,et al.  Satb2 Is a Postmitotic Determinant for Upper-Layer Neuron Specification in the Neocortex , 2008, Neuron.

[18]  Sébastien Vigneau,et al.  Multiple origins of Cajal-Retzius cells at the borders of the developing pallium , 2005, Nature Neuroscience.

[19]  P. Rakić,et al.  A novel cytoarchitectonic area induced experimentally within the primate visual cortex. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[20]  M. Wassef,et al.  Role of thalamic axons in the expression of H-2Z1, a mouse somatosensory cortex specific marker. , 1999, Cerebral cortex.

[21]  P. Kind,et al.  Fgf receptor 3 activation promotes selective growth and expansion of occipitotemporal cortex , 2009, Neural Development.

[22]  G. Clowry,et al.  Progressive loss of PAX6, TBR2, NEUROD and TBR1 mRNA gradients correlates with translocation of EMX2 to the cortical plate during human cortical development , 2008, The European journal of neuroscience.

[23]  D. O'Leary,et al.  Do cortical areas emerge from a protocortex? , 1989, Trends in Neurosciences.

[24]  S. Lodato,et al.  Area-specific temporal control of corticospinal motor neuron differentiation by COUP-TFI , 2010, Proceedings of the National Academy of Sciences.

[25]  Michael C Crair,et al.  The Nuclear Orphan Receptor COUP-TFI Is Required for Differentiation of Subplate Neurons and Guidance of Thalamocortical Axons , 1999, Neuron.

[26]  D. O'Leary,et al.  Fgf10 Regulates Transition Period of Cortical Stem Cell Differentiation to Radial Glia Controlling Generation of Neurons and Basal Progenitors , 2009, Neuron.

[27]  S. Nakamura,et al.  Instructive role of a peripheral pattern for the central patterning of the trigeminal projection at the brainstem and thalamus revealed by an artificially altered whisker pattern , 2006, Neuroscience.

[28]  Arnold R Kriegstein,et al.  Patterns of neuronal migration in the embryonic cortex , 2004, Trends in Neurosciences.

[29]  Y. Kawaguchi,et al.  Parvalbumin, somatostatin and cholecystokinin as chemical markers for specific GABAergic interneuron types in the rat frontal cortex , 2002, Journal of neurocytology.

[30]  P. Rakic,et al.  Four-Dimensional Migratory Coordinates of GABAergic Interneurons in the Developing Mouse Cortex , 2003, The Journal of Neuroscience.

[31]  M. Sur,et al.  Patterning and Plasticity of the Cerebral Cortex , 2005, Science.

[32]  G. Orban,et al.  Reorganization in the visual cortex after retinal and cortical damage. , 1999, Restorative neurology and neuroscience.

[33]  S. Pfaff,et al.  Transcriptional codes and the control of neuronal identity. , 2002, Annual review of neuroscience.

[34]  Qing Liu,et al.  Differential Expression of COUP-TFI, CHL1, and Two Novel Genes in Developing Neocortex Identified by Differential Display PCR , 2000, The Journal of Neuroscience.

[35]  D. O'Leary,et al.  Development of projection neuron types, axon pathways, and patterned connections of the mammalian cortex , 1993, Neuron.

[36]  Luca Muzio,et al.  Area identity shifts in the early cerebral cortex of Emx2−/− mutant mice , 2000, Nature Neuroscience.

[37]  J. Rubenstein,et al.  Gsh2 and Pax6 play complementary roles in dorsoventral patterning of the mammalian telencephalon. , 2001, Development.

[38]  E. Grove,et al.  Massive loss of Cajal-Retzius cells does not disrupt neocortical layer order , 2006, Development.

[39]  P. Goldman-Rakic,et al.  Prefrontal Microcircuits: Membrane Properties and Excitatory Input of Local, Medium, and Wide Arbor Interneurons , 2001, The Journal of Neuroscience.

[40]  D. O'Leary,et al.  Specification of neocortical areas and thalamocortical connections. , 1994, Annual review of neuroscience.

[41]  J. Rubenstein,et al.  Early neocortical regionalization in the absence of thalamic innervation. , 1999, Science.

[42]  P. Arlotta,et al.  Neuronal subtype specification in the cerebral cortex , 2007, Nature Reviews Neuroscience.

[43]  Shun-ichi Nakamura,et al.  Role of Fabp7, a Downstream Gene of Pax6, in the Maintenance of Neuroepithelial Cells during Early Embryonic Development of the Rat Cortex , 2005, The Journal of Neuroscience.

[44]  T. Woolsey,et al.  Somatosensory Cortex: Structural Alterations following Early Injury to Sense Organs , 1973, Science.

[45]  J. Parnavelas,et al.  Lineage analysis reveals neurotransmitter (GABA or glutamate) but not calcium-binding protein homogeneity in clonally related cortical neurons , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[46]  H. Toresson,et al.  Genetic control of dorsal-ventral identity in the telencephalon: opposing roles for Pax6 and Gsh2. , 2000, Development.

[47]  L. Muzio,et al.  Effects of Emx2 inactivation on the gene expression profile of neural precursors , 2006, The European journal of neuroscience.

[48]  E. Grove,et al.  Area and layer patterning in the developing cerebral cortex , 2006, Current Opinion in Neurobiology.

[49]  Henry Kennedy,et al.  Cell-cycle control and cortical development , 2007, Nature Reviews Neuroscience.

[50]  J Dörfl,et al.  Selective breeding for variations in patterns of mystacial vibrissae of mice. Bilaterally symmetrical strains derived from ICR stock. , 1986, The Journal of heredity.

[51]  C. W. Ragsdale,et al.  Identification of a Pax6-Dependent Epidermal Growth Factor Family Signaling Source at the Lateral Edge of the Embryonic Cerebral Cortex , 2003, The Journal of Neuroscience.

[52]  O. Fehér,et al.  Neuronal plasticity induced by neonatal monocular (and binocular) enucleation , 1996, Progress in Neurobiology.

[53]  M. Levine,et al.  Threshold responses to the dorsal regulatory gradient and the subdivision of primary tissue territories in the Drosophila embryo. , 1996, Current opinion in genetics & development.

[54]  M. Sur,et al.  Plasticity and specificity of cortical processing networks , 2006, Trends in Neurosciences.

[55]  C. Walsh,et al.  Protein–Protein interactions, cytoskeletal regulation and neuronal migration , 2001, Nature Reviews Neuroscience.

[56]  E. Grove,et al.  LIM-homeodomain gene Lhx2 regulates the formation of the cortical hem , 2001, Mechanisms of Development.

[57]  H. Kennedy,et al.  G1 Phase Regulation, Area-Specific Cell Cycle Control, and Cytoarchitectonics in the Primate Cortex , 2005, Neuron.

[58]  Shen-Ju Chou,et al.  Cortical area size dictates performance at modality-specific behaviors , 2007, Proceedings of the National Academy of Sciences.

[59]  P. Rakic Specification of cerebral cortical areas. , 1988, Science.

[60]  L. Krubitzer,et al.  Nature versus nurture revisited: an old idea with a new twist , 2003, Progress in Neurobiology.

[61]  F. Lepore,et al.  Crossmodal plasticity in sensory loss. , 2011, Progress in brain research.

[62]  F. Alt,et al.  Lhx2, a LIM homeobox gene, is required for eye, forebrain, and definitive erythrocyte development. , 1997, Development.

[63]  L. White,et al.  Structure of the human sensorimotor system. II: Lateral symmetry. , 1997, Cerebral cortex.

[64]  D. Purves Body and Brain: A Trophic Theory of Neural Connections , 1988 .

[65]  H. Killackey,et al.  The effects of bilateral enucleation in the primate fetus on the parcellation of visual cortex. , 1991, Brain research. Developmental brain research.

[66]  Lei Zhang,et al.  Activity-Dependent Development of Callosal Projections in the Somatosensory Cortex , 2007, The Journal of Neuroscience.

[67]  T. Jessell Neuronal specification in the spinal cord: inductive signals and transcriptional codes , 2000, Nature Reviews Genetics.

[68]  G. Martin,et al.  The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. , 1995, Development.

[69]  S. Nakanishi,et al.  Distinct ontogenic and regional expressions of newly identified Cajal-Retzius cell-specific genes during neocorticogenesis. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[70]  J. Rubenstein,et al.  Patterning of frontal cortex subdivisions by Fgf17 , 2007, Proceedings of the National Academy of Sciences.

[71]  Luca Muzio,et al.  Emx2 and Pax6 control regionalization of the pre-neuronogenic cortical primordium. , 2002, Cerebral cortex.

[72]  Juan Carlos Izpisua Belmonte,et al.  Sp8 exhibits reciprocal induction with Fgf8 but has an opposing effect on anterior-posterior cortical area patterning , 2007, Neural Development.

[73]  Paola Arlotta,et al.  Neuronal Subtype-Specific Genes that Control Corticospinal Motor Neuron Development In Vivo , 2005, Neuron.

[74]  A. Lumsden,et al.  Compartments and their boundaries in vertebrate brain development , 2005, Nature Reviews Neuroscience.

[75]  D. Feldman Synaptic mechanisms for plasticity in neocortex. , 2009, Annual review of neuroscience.

[76]  D. O'Leary,et al.  Lhx2 specifies regional fate in Emx1 lineage of telencephalic progenitors generating cerebral cortex , 2009, Nature Neuroscience.

[77]  D. O'Leary,et al.  The physiological identification of pyramidal tract neurons within transplants in the rostral cortex taken from the occipital cortex during development , 1987, Brain Research.

[78]  P. Gruss,et al.  Novel genes differentially expressed in cortical regions during late neurogenesis , 2007, The European journal of neuroscience.

[79]  J. Rubenstein,et al.  Molecular regionalization of the neocortex is disrupted in Fgf8 hypomorphic mutants , 2003, Development.

[80]  Pasko Rakic,et al.  Independent parcellation of the embryonic visual cortex and thalamus revealed by combinatorial Eph/ephrin gene expression , 2001, Current Biology.

[81]  M. Tsai,et al.  COUP-TFI: an intrinsic factor for early regionalization of the neocortex. , 2001, Genes & development.

[82]  C. Walsh,et al.  Patterning of the Dorsal Telencephalon and Cerebral Cortex by a Roof Plate-Lhx2 Pathway , 2001, Neuron.

[83]  C. Walsh,et al.  Transcription factor Lmo4 defines the shape of functional areas in developing cortices and regulates sensorimotor control. , 2009, Developmental biology.

[84]  L. Krubitzer,et al.  Comparative studies of diurnal and nocturnal rodents: Differences in lifestyle result in alterations in cortical field size and number , 2010, The Journal of comparative neurology.

[85]  John D West,et al.  Controlled overexpression of Pax6 in vivo negatively autoregulates the Pax6 locus, causing cell-autonomous defects of late cortical progenitor proliferation with little effect on cortical arealization , 2006, Development.

[86]  D. O'Leary,et al.  Regulation of area identity in the mammalian neocortex by Emx2 and Pax6. , 2000, Science.

[87]  Leah Krubitzer,et al.  The Magnificent Compromise: Cortical Field Evolution in Mammals , 2007, Neuron.

[88]  N. Šestan,et al.  Zfp312 is required for subcortical axonal projections and dendritic morphology of deep-layer pyramidal neurons of the cerebral cortex. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[89]  L. Merabet,et al.  Neural reorganization following sensory loss: the opportunity of change , 2010, Nature Reviews Neuroscience.

[90]  M. Götz,et al.  Loss- and gain-of-function analyses reveal targets of Pax6 in the developing mouse telencephalon , 2007, Molecular and Cellular Neuroscience.

[91]  B. Fischer,et al.  Visual field representations and locations of visual areas V1/2/3 in human visual cortex. , 2003, Journal of vision.

[92]  B. Cubelos,et al.  Cux-2 controls the proliferation of neuronal intermediate precursors of the cortical subventricular zone. , 2008, Cerebral cortex.

[93]  Massimo Scanziani,et al.  A precritical period for plasticity in visual cortex , 2005, Current Opinion in Neurobiology.

[94]  D. O'Leary,et al.  Potential target genes of EMX2 include Odz/Ten-M and other gene families with implications for cortical patterning , 2006, Molecular and Cellular Neuroscience.

[95]  J. Kaas,et al.  The evolution of the neocortex in mammals: how is phenotypic diversity generated? , 2005, Current Opinion in Neurobiology.

[96]  Luis Puelles,et al.  Cortical Excitatory Neurons and Glia, But Not GABAergic Neurons, Are Produced in the Emx1-Expressing Lineage , 2002, The Journal of Neuroscience.

[97]  Michel Cohen-Tannoudji,et al.  Early determination of a mouse somatosensory cortex marker , 1994, Nature.

[98]  Z. Wollberg,et al.  Cross-modal neuroplasticity in the blind mole rat Spalax ehrenbergi: a WGA-HRP tracing study. , 1994, Neuroreport.

[99]  D. O'Leary,et al.  Patterning centers, regulatory genes and extrinsic mechanisms controlling arealization of the neocortex , 2002, Current Opinion in Neurobiology.

[100]  Ahmed Mansouri,et al.  Genetic interplay between the transcription factors Sp8 and Emx2 in the patterning of the forebrain , 2007, Neural Development.

[101]  F. Sanides COMPARATIVE ARCHITECTONICS OF THE NEOCORTEX OF MAMMALS AND THEIR EVOLUTIONARY INTERPRETATION * , 1969 .

[102]  T. Hirano,et al.  Zinc finger gene fez‐like functions in the formation of subplate neurons and thalamocortical axons , 2004, Developmental dynamics : an official publication of the American Association of Anatomists.

[103]  Shen-Ju Chou,et al.  Area Patterning of the Mammalian Cortex , 2007, Neuron.

[104]  M. Gulisano,et al.  Two vertebrate homeobox genes related to the Drosophila empty spiracles gene are expressed in the embryonic cerebral cortex. , 1992, The EMBO journal.

[105]  E. Ahrens,et al.  Disruption of Foxg1 expression by knock-in of Cre recombinase: Effects on the development of the mouse telencephalon , 2007, Neuroscience.

[106]  S. Pleasure,et al.  Expression of the BMP antagonist Dan during murine forebrain development. , 2003, Brain research. Developmental brain research.

[107]  B. Hogan,et al.  Bone morphogenetic proteins (BMPs) as regulators of dorsal forebrain development. , 1997, Development.

[108]  P. Rakic,et al.  Origin of GABAergic neurons in the human neocortex , 2002, Nature.

[109]  Zoltán Molnár,et al.  Altered Molecular Regionalization and Normal Thalamocortical Connections in Cortex-Specific Pax6 Knock-Out Mice , 2008, The Journal of Neuroscience.

[110]  Takayoshi Inoue,et al.  Gene expression analysis of the late embryonic mouse cerebral cortex using DNA microarray: identification of several region- and layer-specific genes. , 2004, Cerebral cortex.

[111]  B. Molyneaux,et al.  Bhlhb5 Regulates the Postmitotic Acquisition of Area Identities in Layers II-V of the Developing Neocortex , 2008, Neuron.

[112]  Bradley L. Schlaggar,et al.  The specification of sensory cortex: Lessons from cortical transplantation , 1992, Experimental Neurology.

[113]  B. Stanfield,et al.  Fetal occipital cortical neurons transplanted to the rostral cortex can extend and maintain a pyramidal tract axon , 1985, Nature.

[114]  D. O'Leary,et al.  Ventralized dorsal telencephalic progenitors in Pax6 mutant mice generate GABA interneurons of a lateral ganglionic eminence fate. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[115]  D. O'Leary,et al.  Novel IgCAM, MDGA1, expressed in unique cortical area- and layer-specific patterns and transiently by distinct forebrain populations of Cajal-Retzius neurons. , 2007, Cerebral cortex.

[116]  P. Rakić,et al.  Development of prestriate visual projections in the monkey and human fetal cerebrum revealed by transient cholinesterase staining , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[117]  Tobias Bonhoeffer,et al.  Lifelong learning: ocular dominance plasticity in mouse visual cortex , 2006, Current Opinion in Neurobiology.

[118]  C. W. Ragsdale,et al.  The hem of the embryonic cerebral cortex is defined by the expression of multiple Wnt genes and is compromised in Gli3-deficient mice. , 1998, Development.

[119]  C. Walsh,et al.  Human brain malformations and their lessons for neuronal migration. , 2001, Annual review of neuroscience.

[120]  D. O'Leary,et al.  Selective elimination of axons extended by developing cortical neurons is dependent on regional locale: experiments utilizing fetal cortical transplants , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[121]  D. Price,et al.  The transcription factor Foxg1 regulates telencephalic progenitor proliferation cell autonomously, in part by controlling Pax6 expression levels , 2011, Neural Development.

[122]  Y. Ohkubo,et al.  Coordinate regulation and synergistic actions of BMP4, SHH and FGF8 in the rostral prosencephalon regulate morphogenesis of the telencephalic and optic vesicles , 2002, Neuroscience.

[123]  Salvador Martinez,et al.  Dose-dependent functions of Fgf8 in regulating telencephalic patterning centers , 2006, Development.

[124]  Stefan Krauss,et al.  COUP-TFI coordinates cortical patterning, neurogenesis, and laminar fate and modulates MAPK/ERK, AKT, and beta-catenin signaling. , 2008, Cerebral cortex.

[125]  O. Marín,et al.  Cell migration in the forebrain. , 2003, Annual review of neuroscience.

[126]  E. Grove,et al.  Emx2 patterns the neocortex by regulating FGF positional signaling , 2003, Nature Neuroscience.

[127]  P. Rakic,et al.  Decision by division: making cortical maps , 2009, Trends in Neurosciences.

[128]  A. Huberman Mechanisms of eye-specific visual circuit development , 2007, Current Opinion in Neurobiology.

[129]  Tadashi Hamasaki,et al.  EMX2 Regulates Sizes and Positioning of the Primary Sensory and Motor Areas in Neocortex by Direct Specification of Cortical Progenitors , 2004, Neuron.

[130]  D. Hubel,et al.  SINGLE-CELL RESPONSES IN STRIATE CORTEX OF KITTENS DEPRIVED OF VISION IN ONE EYE. , 1963, Journal of neurophysiology.

[131]  S. Mcconnell,et al.  The determination of projection neuron identity in the developing cerebral cortex , 2008, Current Opinion in Neurobiology.

[132]  P Gruss,et al.  Forebrain patterning defects in Small eye mutant mice. , 1996, Development.

[133]  Tetsuo Noda,et al.  Brn-1 and Brn-2 share crucial roles in the production and positioning of mouse neocortical neurons. , 2002, Genes & development.

[134]  Leah Krubitzer,et al.  In Search of a Unifying Theory of Complex Brain Evolution , 2009, Annals of the New York Academy of Sciences.

[135]  Shen-Ju Chou,et al.  COUP-TFI regulates the balance of cortical patterning between frontal/motor and sensory areas , 2007, Nature Neuroscience.

[136]  M. Rosenfeld,et al.  Transcriptional Regulation of Cortical Neuron Migration by POU Domain Factors , 2002, Science.

[137]  John G. Parnavelas,et al.  Modes of neuronal migration in the developing cerebral cortex , 2002, Nature Reviews Neuroscience.

[138]  S. Mcconnell,et al.  Genomic characterisation of a Fgf-regulated gradient-based neocortical protomap , 2005, Development.

[139]  P. Arlotta,et al.  Fezl Is Required for the Birth and Specification of Corticospinal Motor Neurons , 2005, Neuron.

[140]  D. O'Leary,et al.  Potential of visual cortex to develop an array of functional units unique to somatosensory cortex , 1991, Science.

[141]  M. Wassef,et al.  Specification of Somatosensory Area Identity in Cortical Explants , 1999, The Journal of Neuroscience.

[142]  E. Grove,et al.  Neocortex Patterning by the Secreted Signaling Molecule FGF8 , 2001, Science.

[143]  C. Collins,et al.  Variation in the cortical area map of C57BL/6J and DBA/2J inbred mice predicts strain identity , 2005, BMC Neuroscience.

[144]  M. Sur,et al.  Differential gene expression between sensory neocortical areas: potential roles for Ten_m3 and Bcl6 in patterning visual and somatosensory pathways. , 2007, Cerebral cortex.

[145]  M. Levine,et al.  Regulation of two pair-rule stripes by a single enhancer in the Drosophila embryo. , 1996, Developmental biology.

[146]  S. Mcconnell,et al.  Satb2 Regulates Callosal Projection Neuron Identity in the Developing Cerebral Cortex , 2008, Neuron.

[147]  A. Goffinet,et al.  Reelin and brain development , 2003, Nature Reviews Neuroscience.