A dynamic two-dimensional heterogeneous model for water gas shift reactors

A dynamic, heterogeneous, two-dimensional model for packed-bed water gas shift reactors is presented. It can be applied to both high and low temperature shifts, and at scales ranging from industrial (for power plant applications) to small (such as automotive fuel cell applications). The model is suitable for any catalyst for which kinetic data are available, and shows excellent agreement with available experimental data for non-equilibrium conditions. The model is applied to an IGCC-TIGAS polygeneration plant to examine the dynamic behavior of the WGS units. The development of catalyst hot-spots is predicted during start-up or transition between steady states under certain conditions.

[1]  J. G. Buglass,et al.  Noble metal water gas shift catalysis: Kinetics study and reactor design ☆ , 2005 .

[2]  L. Kiwi-Minsker,et al.  Mathematical modelling of the unsteady-state oxidation of nickel gauze catalysts , 2003 .

[3]  Ib Chorkendorff,et al.  A Microkinetic Analysis of the Water–Gas Shift Reaction under Industrial Conditions , 1996 .

[4]  Wei-Hsin Chen,et al.  Characterization of water gas shift reaction in association with carbon dioxide sequestration , 2007 .

[5]  Charles T. Campbell,et al.  A kinetic model of the water gas shift reaction , 1992 .

[6]  Water-Gas Shift Reaction. Effect of Pressure on Rate over an Iron- Oxide-Chromium Oxide Catalyst. , 1950 .

[7]  Hengyong Xu,et al.  Water–gas shift reaction in a Pd membrane reactor over Pt/Ce0.6Zr0.4O2 catalyst , 2009 .

[8]  Charles N. Satterfield,et al.  Mass transfer in heterogeneous catalysis , 1969 .

[9]  C. Singh,et al.  Simulation of High-Temperature Water-Gas Shift Reactors , 1977 .

[10]  D. G. Roberts,et al.  Kinetics of high-temperature water-gas shift reaction over two iron-based commercial catalysts using simulated coal-derived syngases , 2009 .

[11]  Kinetics of the water–gas shift reaction over a rhodium-promoted iron–chromium oxide catalyst , 2005 .

[12]  B. A. Toseland,et al.  Single-Step Syngas-to-Dimethyl Ether Processes for Optimal Productivity, Minimal Emissions, and Natural Gas-Derived Syngas , 1999 .

[13]  Don W. Green,et al.  Perry's Chemical Engineers' Handbook , 2007 .

[14]  Charles N. Satterfield,et al.  Heterogeneous catalysis in industrial practice , 1991 .

[15]  B. S. Hemingway Quartz; heat capacities from 340 to 1000 K and revised values for the thermodynamic properties , 1987 .

[16]  Tsung Leo Jiang,et al.  Modeling and simulation of hydrogen generation from high-temperature and low-temperature water gas shift reactions , 2008 .

[17]  H. Herzog,et al.  Carbon Capture and Storage from Fossil Fuel Use , 2004 .

[18]  J. Dufour,et al.  Synthesis of Fe3O4-based catalysts for the high-temperature water gas shift reaction , 2009 .

[19]  S. Chan,et al.  Water–gas shift reaction – A 2-D modeling approach , 2008 .

[20]  Sungwon Hwang,et al.  Heterogeneous catalytic reactor design with optimum temperature profile I: application of catalyst dilution and side-stream distribution , 2004 .

[21]  D. Newsome The Water-Gas Shift Reaction , 1980 .

[22]  Norma Amadeo,et al.  Simulation of a low temperature water gas shift reactor using the heterogeneous model/application to a pem fuel cell , 2006 .

[23]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[24]  Riitta L. Keiski,et al.  Development and verification of a simulation model for a non-isothermal water-gas shift reactor , 1992 .

[25]  J. M. Moe Design of water-gas shift reactors , 1962 .

[26]  P. I. Barton,et al.  Efficient sensitivity analysis of large-scale differential-algebraic systems , 1997 .

[27]  J. Bae,et al.  Study of activity and effectiveness factor of noble metal catalysts for water-gas shift reaction , 2009 .

[28]  Thomas F. Edgar,et al.  Nonlinear model predictive control of a fixed-bed water-gas shift reactor: An experimental study , 1994 .

[29]  Pio A. Aguirre,et al.  Analysis of design variables for water-gas-shift reactors by model-based optimization , 2007 .

[30]  James O. Wilkes,et al.  Fluid Mechanics for Chemical Engineers , 1998 .

[31]  Menderes Levent Water-gas shift reaction over porous catalyst: temperature and reactant concentration distribution , 2001 .

[32]  H. S. Fogler,et al.  Elements of Chemical Reaction Engineering , 1986 .

[33]  Harvey G. Stenger,et al.  Water gas shift reaction kinetics and reactor modeling for fuel cell grade hydrogen , 2003 .

[34]  N. A. Markova,et al.  Synthesis of gasoline from syngas via dimethyl ether , 2007 .

[35]  Cutler J. Cleveland,et al.  Encyclopedia of Energy , 2004 .

[36]  Norma Amadeo,et al.  Hydrogen production from the low-temperature water-gas shift reaction: Kinetics and simulation of the industrial reactor , 1995 .

[37]  G. Chinchen,et al.  Water-gas shift reaction over an iron oxide/chromium oxide catalyst.: III: kinetics of reaction , 1984 .

[38]  Parametric study of microreactor design for water gas shift reactor using an integrated reaction and heat exchange model , 2005 .

[39]  R. Datta,et al.  An improved microkinetic model for the water gas shift reaction on copper , 2003 .

[40]  Riitta L. Keiski,et al.  Stationary and transient kinetics of the high temperature water-gas shift reaction , 1996 .

[41]  Dong Hyun Kim,et al.  Performance of copper–ceria catalysts for water gas shift reaction in medium temperature range , 2009 .

[42]  G. Chinchen,et al.  Water-gas shift reaction over an iron oxide/chromium oxide catalyst. , 1984 .