Emerging roles of SUMO modification in arthritis.

[1]  R. Gay,et al.  Epigenetics and rheumatoid arthritis: the role of SENP1 in the regulation of MMP-1 expression. , 2010, Journal of autoimmunity.

[2]  A. Sharrocks,et al.  SENP1 participates in the dynamic regulation of Elk-1 SUMOylation , 2010, The Biochemical journal.

[3]  W. Thomson,et al.  Biologic predictors of extension of oligoarticular juvenile idiopathic arthritis as determined from synovial fluid cellular composition and gene expression , 2010, Arthritis and rheumatism.

[4]  M. Lotz,et al.  Autophagy is a protective mechanism in normal cartilage, and its aging-related loss is linked with cell death and osteoarthritis. , 2010, Arthritis and rheumatism.

[5]  O. Larsson,et al.  SUMOylation Mediates the Nuclear Translocation and Signaling of the IGF-1 Receptor , 2010, Science Signaling.

[6]  F. Navarro-Garcia,et al.  Cell death of chondrocytes is a combination between apoptosis and autophagy during the pathogenesis of Osteoarthritis within an experimental model , 2010, Apoptosis.

[7]  A. Vertegaal,et al.  RNF4 and VHL regulate the proteasomal degradation of SUMO-conjugated Hypoxia-Inducible Factor-2α , 2009, Nucleic acids research.

[8]  A. Dejean,et al.  PARP‐1 transcriptional activity is regulated by sumoylation upon heat shock , 2009, The EMBO journal.

[9]  Kanji Fukuda [Progress of research in osteoarthritis. Involvement of reactive oxygen species in the pathogenesis of osteoarthritis]. , 2009, Clinical calcium.

[10]  Peter J. Keller,et al.  SUMOylation of the mitochondrial fission protein Drpl occurs at multiple nonconsensus sites within the B domain and is linked to its activity cycle , 2009, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[11]  S. Müller,et al.  Sumoylation of poly(ADP‐ribose) polymerase 1 inhibits its acetylation and restrains transcriptional coactivator function , 2009, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[12]  R. Hipskind,et al.  Basic fibroblast growth factor induces matrix metalloproteinase-13 via ERK MAP kinase-altered phosphorylation and sumoylation of Elk-1 in human adult articular chondrocytes , 2009, Open access rheumatology : research and reviews.

[13]  R. Hotchkiss,et al.  Cell death. , 2009, The New England journal of medicine.

[14]  Tibor Vellai,et al.  The regulation of aging: does autophagy underlie longevity? , 2009, Trends in cell biology.

[15]  B. Liu,et al.  Summon SUMO to wrestle with inflammation. , 2009, Molecular cell.

[16]  E. Yeh,et al.  SENP3 is responsible for HIF‐1 transactivation under mild oxidative stress via p300 de‐SUMOylation , 2009, The EMBO journal.

[17]  M. Kurosaka,et al.  Role of p53 in human chondrocyte apoptosis in response to shear strain. , 2009, Arthritis and rheumatism.

[18]  J. Palvimo,et al.  SUMOylation Attenuates the Function of PGC-1α* , 2009, The Journal of Biological Chemistry.

[19]  Paul Pavlidis,et al.  Gene expression signatures in polyarticular juvenile idiopathic arthritis demonstrate disease heterogeneity and offer a molecular classification of disease subsets. , 2009, Arthritis and rheumatism.

[20]  H. McBride,et al.  MAPL is a new mitochondrial SUMO E3 ligase that regulates mitochondrial fission , 2009, EMBO reports.

[21]  S. Abramson,et al.  Developments in the scientific understanding of osteoarthritis , 2009, Arthritis research & therapy.

[22]  I. Shapiro,et al.  Regulation of autophagy in human and murine cartilage: hypoxia-inducible factor 2 suppresses chondrocyte autophagy. , 2009, Arthritis and rheumatism.

[23]  Per Stehmeier,et al.  Regulation of p53 family members by the ubiquitin-like SUMO system. , 2009, DNA repair.

[24]  D. Feinstein,et al.  Modulation of inducible nitric oxide synthase expression by sumoylation , 2009, Journal of Neuroinflammation.

[25]  S. Colgan,et al.  Adenosine Signaling Mediates SUMO-1 Modification of IκBα during Hypoxia and Reoxygenation* , 2009, Journal of Biological Chemistry.

[26]  A. Ciarrocchi,et al.  Tollip Is a Mediator of Protein Sumoylation , 2009, PloS one.

[27]  H. Pavenstädt,et al.  Cell death in rheumatoid arthritis , 2009, Apoptosis.

[28]  C. L. Murphy,et al.  Hypoxia. HIF-mediated articular chondrocyte function: prospects for cartilage repair , 2009, Arthritis research & therapy.

[29]  M. Sporn,et al.  Retinoid X receptor and peroxisome proliferator-activated receptor-gamma agonists cooperate to inhibit matrix metalloproteinase gene expression , 2008, Arthritis research & therapy.

[30]  M. Feldmann,et al.  Suppression of tumour necrosis factor production from mononuclear cells by a novel synthetic compound, CLX-090717. , 2008, Rheumatology.

[31]  B. Brüne,et al.  Sumoylation of Peroxisome Proliferator-Activated Receptor γ by Apoptotic Cells Prevents Lipopolysaccharide-Induced NCoR Removal from κB Binding Sites Mediating Transrepression of Proinflammatory Cytokines1 , 2008, The Journal of Immunology.

[32]  M. Crow,et al.  Innate immune system activation in osteoarthritis: is osteoarthritis a chronic wound? , 2008, Current opinion in rheumatology.

[33]  Howard S. An,et al.  Biological impact of the fibroblast growth factor family on articular cartilage and intervertebral disc homeostasis. , 2008, Gene.

[34]  O. Larsson,et al.  Identification of c-Cbl as a new ligase for insulin-like growth factor-I receptor with distinct roles from Mdm2 in receptor ubiquitination and endocytosis. , 2008, Cancer research.

[35]  S. Hirono,et al.  Treatment of arthritis with a selective inhibitor of c-Fos/activator protein-1 , 2008, Nature Biotechnology.

[36]  G. Thiele,et al.  The development of novel therapies for rheumatoid arthritis , 2008, Expert opinion on therapeutic patents.

[37]  Z. Madar Faculty Opinions recommendation of SUMOylation of Krüppel-like transcription factor 5 acts as a molecular switch in transcriptional programs of lipid metabolism involving PPAR-delta. , 2008 .

[38]  R. Derynck,et al.  The type I TGF-β receptor is covalently modified and regulated by sumoylation , 2008, Nature Cell Biology.

[39]  Y. Sekine,et al.  Sumoylation of Smad3 stimulates its nuclear export during PIASy-mediated suppression of TGF-beta signaling. , 2008, Biochemical and biophysical research communications.

[40]  R. Hipskind,et al.  SUMOylation Regulates the Transcriptional Activity of JunB in T Lymphocytes1 , 2008, The Journal of Immunology.

[41]  S. F. Chau,et al.  Molecular basis of the redox regulation of SUMO proteases: a protective mechanism of intermolecular disulfide linkage against irreversible sulfhydryl oxidation , 2008, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[42]  Jinke Cheng,et al.  Induction of the SUMO-specific Protease 1 Transcription by the Androgen Receptor in Prostate Cancer Cells* , 2007, Journal of Biological Chemistry.

[43]  M. J. Lyst,et al.  A role for SUMO modification in transcriptional repression and activation. , 2007, Biochemical Society transactions.

[44]  Jinke Cheng,et al.  SUMO-Specific Protease 1 Is Essential for Stabilization of HIF1α during Hypoxia , 2007, Cell.

[45]  H. Ulrich SUMO Teams up with Ubiquitin to Manage Hypoxia , 2007, Cell.

[46]  R. Johnson,et al.  HIF1α regulation of Sox9 is necessary to maintain differentiation of hypoxic prechondrogenic cells during early skeletogenesis , 2007, Development.

[47]  J. Qu,et al.  Nitric Oxide Destabilizes Pias3 and Regulates Sumoylation , 2007, PloS one.

[48]  J. Norman,et al.  Basic Fibroblast Growth Factor Activates the MAPK and NFκB Pathways That Converge on Elk-1 to Control Production of Matrix Metalloproteinase-13 by Human Adult Articular Chondrocytes* , 2007, Journal of Biological Chemistry.

[49]  F. Holsboer,et al.  RSUME, a Small RWD-Containing Protein, Enhances SUMO Conjugation and Stabilizes HIF-1α during Hypoxia , 2007, Cell.

[50]  C. L. Murphy,et al.  Hypoxia-inducible factor 2alpha is essential for hypoxic induction of the human articular chondrocyte phenotype. , 2007, Arthritis and rheumatism.

[51]  K. Gelse,et al.  Hypoxia and osteoarthritis: how chondrocytes survive hypoxic environments , 2007, Current opinion in rheumatology.

[52]  J. Pouysségur,et al.  SUMOylation of hypoxia-inducible factor-1α reduces its transcriptional activity , 2007 .

[53]  M. Hurtig,et al.  OP-1/BMP-7 in cartilage repair , 2007, International Orthopaedics.

[54]  A. Albor,et al.  Novel initiation genes in squamous cell carcinomagenesis: A role for substrate‐specific ubiquitylation in the control of cell survival , 2007, Molecular carcinogenesis.

[55]  J. Saklatvala,et al.  FGF-2 is bound to perlecan in the pericellular matrix of articular cartilage, where it acts as a chondrocyte mechanotransducer. , 2007, Osteoarthritis and cartilage.

[56]  B. Liu,et al.  Proinflammatory Stimuli Induce IKKα-Mediated Phosphorylation of PIAS1 to Restrict Inflammation and Immunity , 2007, Cell.

[57]  P. D. Kraan,et al.  TGF-β and osteoarthritis , 2007 .

[58]  S. Miyamoto,et al.  SUMO and NF-κB ties , 2007, Cellular and Molecular Life Sciences.

[59]  J. Mellor,et al.  SUMOylation regulates kainate-receptor-mediated synaptic transmission , 2007, Nature.

[60]  J. Block,et al.  Basic Fibroblast Growth Factor Stimulates Matrix Metalloproteinase-13 via the Molecular Cross-talk between the Mitogen-activated Protein Kinases and Protein Kinase Cδ Pathways in Human Adult Articular Chondrocytes* , 2007, Journal of Biological Chemistry.

[61]  O. Larsson,et al.  Role of Ubiquitination in IGF-1 Receptor Signaling and Degradation , 2007, PloS one.

[62]  H. McBride,et al.  The SUMO protease SENP5 is required to maintain mitochondrial morphology and function , 2007, Journal of Cell Science.

[63]  P. Dijke,et al.  Negative regulation of TGF-β receptor/Smad signal transduction , 2007 .

[64]  R. Hay,et al.  Modification of nuclear PML protein by SUMO-1 regulates Fas-induced apoptosis in rheumatoid arthritis synovial fibroblasts , 2007, Proceedings of the National Academy of Sciences.

[65]  A. Dejean,et al.  C-terminal modifications regulate MDM2 dissociation and nuclear export of p53 , 2007, Nature Cell Biology.

[66]  J. Martens,et al.  SUMO modification regulates inactivation of the voltage-gated potassium channel Kv1.5 , 2007, Proceedings of the National Academy of Sciences.

[67]  Q. Gu,et al.  Differential regulation of interleukin-1 receptor associated kinase 1 (IRAK1) splice variants. , 2007, Molecular immunology.

[68]  I. Shapiro,et al.  HIF-1 Regulation of Chondrocyte Apoptosis: Induction of the Autophagic Pathway , 2007, Autophagy.

[69]  Ming-Jing Hwang,et al.  Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors. , 2006, Molecular cell.

[70]  A. Sharrocks,et al.  An extended consensus motif enhances the specificity of substrate modification by SUMO , 2006, The EMBO journal.

[71]  S. H. Baek,et al.  Negative Modulation of RXRα Transcriptional Activity by Small Ubiquitin-related Modifier (SUMO) Modification and Its Reversal by SUMO-specific Protease SUSP1* , 2006, Journal of Biological Chemistry.

[72]  K. Wilkinson,et al.  SUSP1 antagonizes formation of highly SUMO2/3-conjugated species , 2006, The Journal of cell biology.

[73]  S. Jimenez,et al.  NF-κB as a potential therapeutic target in osteoarthritis and rheumatoid arthritis , 2006 .

[74]  S. Cuzzocrea Role of nitric oxide and reactive oxygen species in arthritis. , 2006, Current pharmaceutical design.

[75]  Jinke Cheng,et al.  Role of desumoylation in the development of prostate cancer. , 2006, Neoplasia.

[76]  A. Dejean,et al.  The E3 SUMO ligase PIASy is a regulator of cellular senescence and apoptosis. , 2006, Molecular cell.

[77]  E. Yeh,et al.  Characterization of a Family of Nucleolar SUMO-specific Proteases with Preference for SUMO-2 or SUMO-3* , 2006, Journal of Biological Chemistry.

[78]  E. Yeh,et al.  Nucleocytoplasmic Shuttling Modulates Activity and Ubiquitination-Dependent Turnover of SUMO-Specific Protease 2 , 2006, Molecular and Cellular Biology.

[79]  H. Ploegh,et al.  The SUMO-Specific Protease SENP5 Is Required for Cell Division , 2006, Molecular and Cellular Biology.

[80]  Andrew D Sharrocks,et al.  PIASxalpha differentially regulates the amplitudes of transcriptional responses following activation of the ERK and p38 MAPK pathways. , 2006, Molecular cell.

[81]  S. Lynch,et al.  A review of the effects of insulin-like growth factor and platelet derived growth factor on in vivo cartilage healing and repair. , 2006, Osteoarthritis and cartilage.

[82]  L. Sistonen,et al.  PDSM, a motif for phosphorylation-dependent SUMO modification. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[83]  J. She,et al.  Proteomic analysis of SUMO4 substrates in HEK293 cells under serum starvation-induced stress. , 2005, Biochemical and biophysical research communications.

[84]  H. Im,et al.  Basic fibroblast growth factor inhibits the anabolic activity of insulin-like growth factor 1 and osteogenic protein 1 in adult human articular chondrocytes. , 2005, Arthritis and rheumatism.

[85]  H. Betz,et al.  Pias1 Interaction and Sumoylation of Metabotropic Glutamate Receptor 8* , 2005, Journal of Biological Chemistry.

[86]  Yongsok Kim,et al.  Desumoylation of homeodomain‐interacting protein kinase 2 (HIPK2) through the cytoplasmic‐nuclear shuttling of the SUMO‐specific protease SENP1 , 2005, FEBS letters.

[87]  J. Kourí,et al.  Chondroptosis: An immunohistochemical study of apoptosis and Golgi complex in chondrocytes from human osteoarthritic cartilage , 2005, Apoptosis.

[88]  P. Brucker,et al.  Tonic activation of hypoxia-inducible factor 1alpha in avascular articular cartilage and implications for metabolic homeostasis. , 2005, Arthritis and rheumatism.

[89]  Amir Gamliel,et al.  A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-γ , 2005, Nature.

[90]  A. Cole,et al.  Increased matrix metalloproteinase-13 production with aging by human articular chondrocytes in response to catabolic stimuli. , 2005, The journals of gerontology. Series A, Biological sciences and medical sciences.

[91]  A. Consoli,et al.  Thiazolidinediones and inflammation , 2005, Lupus.

[92]  R. Hipskind,et al.  Down-Regulation of c-Fos/c-Jun AP-1 Dimer Activity by Sumoylation , 2005, Molecular and Cellular Biology.

[93]  A. Sharrocks,et al.  PIASx acts as an Elk‐1 coactivator by facilitating derepression , 2005, The EMBO journal.

[94]  S. Leivonen,et al.  Smad3 and extracellular signal-regulated kinase 1/2 coordinately mediate transforming growth factor-beta-induced expression of connective tissue growth factor in human fibroblasts. , 2005, The Journal of investigative dermatology.

[95]  G. Chirn,et al.  Development of comprehensive functional genomic screens to identify novel mediators of osteoarthritis. , 2005, Osteoarthritis and cartilage.

[96]  K. Yudoh,et al.  Catabolic stress induces expression of hypoxia-inducible factor (HIF)-1α in articular chondrocytes: involvement of HIF-1α in the pathogenesis of osteoarthritis , 2005, Arthritis research & therapy.

[97]  J. Camonis,et al.  Caspase-8 sumoylation is associated with nuclear localization , 2005, Oncogene.

[98]  S. Abramson,et al.  The fibroblast-like synovial cell in rheumatoid arthritis: a key player in inflammation and joint destruction. , 2005, Clinical immunology.

[99]  H. Shih,et al.  Daxx Mediates the Small Ubiquitin-like Modifier-dependent Transcriptional Repression of Smad4* , 2005, Journal of Biological Chemistry.

[100]  S. Au,et al.  Mapping residues of SUMO precursors essential in differential maturation by SUMO-specific protease, SENP1. , 2005, The Biochemical journal.

[101]  Sharmila Majumdar,et al.  A pilot, two-year longitudinal study of the interrelationship between trabecular bone and articular cartilage in the osteoarthritic knee. , 2004, Osteoarthritis and cartilage.

[102]  Kyu-Won Kim,et al.  Sumoylation increases HIF-1α stability and its transcriptional activity , 2004 .

[103]  T. Osumi,et al.  The transactivating function of peroxisome proliferator‐activated receptor γ is negatively regulated by SUMO conjugation in the amino‐terminal domain , 2004, Genes to cells : devoted to molecular & cellular mechanisms.

[104]  T. A. Wilkinson,et al.  Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[105]  David Reverter,et al.  A basis for SUMO protease specificity provided by analysis of human Senp2 and a Senp2-SUMO complex. , 2004, Structure.

[106]  T. Ohshima,et al.  Transcriptional Activity of Peroxisome Proliferator-activated Receptor γ Is Modulated by SUMO-1 Modification* , 2004, Journal of Biological Chemistry.

[107]  Xiaoyang Wang,et al.  Increase of SUMO‐1 expression in response to hypoxia: direct interaction with HIF‐1α in adult mouse brain and heart in vivo , 2004, FEBS letters.

[108]  K. Bohren,et al.  A M55V Polymorphism in a Novel SUMO Gene (SUMO-4) Differentially Activates Heat Shock Transcription Factors and Is Associated with Susceptibility to Type I Diabetes Mellitus* , 2004, Journal of Biological Chemistry.

[109]  Erica S. Johnson,et al.  Protein modification by SUMO. , 2004, Annual review of biochemistry.

[110]  J. Stephens,et al.  Control of peroxisome proliferator-activated receptor gamma2 stability and activity by SUMOylation. , 2004, Obesity research.

[111]  Xia Lin,et al.  Regulation of Smad4 Sumoylation and Transforming Growth Factor-β Signaling by Protein Inhibitor of Activated STAT1* , 2004, Journal of Biological Chemistry.

[112]  M. Merville,et al.  15-Deoxy-Δ12,14-prostaglandin J2 Inhibits Bay 11-7085-induced Sustained Extracellular Signal-regulated Kinase Phosphorylation and Apoptosis in Human Articular Chondrocytes and Synovial Fibroblasts* , 2004, Journal of Biological Chemistry.

[113]  T. Aigner,et al.  Chondroptosis: A variant of apoptotic cell death in chondrocytes? , 2004, Apoptosis.

[114]  S. Jimenez,et al.  Hypoxia inducible factor-1 alpha expression in human normal and osteoarthritic chondrocytes. , 2004, Osteoarthritis and cartilage.

[115]  Fang Liu,et al.  Repression of Smad4 transcriptional activity by SUMO modification. , 2004, The Biochemical journal.

[116]  A. Sharrocks,et al.  SUMO promotes HDAC-mediated transcriptional repression. , 2004, Molecular cell.

[117]  H. McBride,et al.  Sumo1 Conjugates Mitochondrial Substrates and Participates in Mitochondrial Fission , 2004, Current Biology.

[118]  A. Amis,et al.  Basic fibroblast growth factor mediates transduction of mechanical signals when articular cartilage is loaded. , 2004, Arthritis and rheumatism.

[119]  Peter O'Hare,et al.  Characterization of the Localization and Proteolytic Activity of the SUMO-specific Protease, SENP1* , 2004, Journal of Biological Chemistry.

[120]  T. Ohshima,et al.  Transforming Growth Factor-β-mediated Signaling via the p38 MAP Kinase Pathway Activates Smad-dependent Transcription through SUMO-1 Modification of Smad4* , 2003, Journal of Biological Chemistry.

[121]  J. Girault,et al.  PIAS1-mediated Sumoylation of Focal Adhesion Kinase Activates Its Autophosphorylationn* , 2003, Journal of Biological Chemistry.

[122]  L. Neckers,et al.  IL‐1β mediated up‐regulation of HIF‐lα via an NFkB/COX‐2 pathway identifies HIF‐1 as a critical link between inflammation and oncogenesis , 2003 .

[123]  F. Melchior,et al.  SUMO: ligases, isopeptidases and nuclear pores. , 2003, Trends in biochemical sciences.

[124]  M. Lotz,et al.  Accelerated, aging-dependent development of osteoarthritis in alpha1 integrin-deficient mice. , 2003, Arthritis and rheumatism.

[125]  Tetsuya Yamamoto,et al.  Regulation of Transforming Growth Factor-β Signaling by Protein Inhibitor of Activated STAT, PIASy through Smad3* , 2003, Journal of Biological Chemistry.

[126]  R. Derynck,et al.  Sumoylation of Smad4, the Common Smad Mediator of Transforming Growth Factor-β Family Signaling* , 2003, Journal of Biological Chemistry.

[127]  A. V. van Wijnen,et al.  Inhibitory Effects of Insulin-like Growth Factor-1 and Osteogenic Protein-1 on Fibronectin Fragment- and Interleukin-1β-stimulated Matrix Metalloproteinase-13 Expression in Human Chondrocytes* , 2003, Journal of Biological Chemistry.

[128]  Andrew D Sharrocks,et al.  Dynamic interplay of the SUMO and ERK pathways in regulating Elk-1 transcriptional activity. , 2003, Molecular cell.

[129]  F. Melchior,et al.  Activation of Transforming Growth Factor-β Signaling by SUMO-1 Modification of Tumor Suppressor Smad4/DPC4* , 2003, Journal of Biological Chemistry.

[130]  S. Gay,et al.  Apoptosis in rheumatoid arthritis , 2003, Current opinion in rheumatology.

[131]  E. Maltezos,et al.  Upregulated hypoxia inducible factor-1α and -2α pathway in rheumatoid arthritis and osteoarthritis , 2003, Arthritis research & therapy.

[132]  N. Perkins,et al.  P300 transcriptional repression is mediated by SUMO modification. , 2003, Molecular cell.

[133]  P. D. Di Cesare,et al.  Clinical applications of growth factors for articular cartilage repair. , 2003, American journal of orthopedics.

[134]  Jiahuai Han,et al.  Smad3 mediates transforming growth factor-beta-induced collagenase-3 (matrix metalloproteinase-13) expression in human gingival fibroblasts. Evidence for cross-talk between Smad3 and p38 signaling pathways. , 2002, The Journal of biological chemistry.

[135]  Sang-Gu Hwang,et al.  p38 Kinase Regulates Nitric Oxide-induced Apoptosis of Articular Chondrocytes by Accumulating p53 via NFκB-dependent Transcription and Stabilization by Serine 15 Phosphorylation* , 2002, The Journal of Biological Chemistry.

[136]  H. Saitoh,et al.  Enzymes of the SUMO Modification Pathway Localize to Filaments of the Nuclear Pore Complex , 2002, Molecular and Cellular Biology.

[137]  S. Yamasaki,et al.  Functional changes in rheumatoid fibroblast‐like synovial cells through activation of peroxisome proliferator‐activated receptor γ‐mediated signalling pathway , 2002, Clinical and experimental immunology.

[138]  T. Mayumi,et al.  PPAR gamma ligands inhibit nitrotyrosine formation and inflammatory mediator expressions in adjuvant-induced rheumatoid arthritis mice. , 2002, European journal of pharmacology.

[139]  A. Sharrocks,et al.  The ETS Domain Transcription Factor Elk-1 Contains a Novel Class of Repression Domain , 2002, Molecular and Cellular Biology.

[140]  M. Dasso,et al.  Association of the Human SUMO-1 Protease SENP2 with the Nuclear Pore* , 2002, The Journal of Biological Chemistry.

[141]  Juliana Xu,et al.  Activation of p53 by Protein Inhibitor of Activated Stat1 (PIAS1)* , 2002, The Journal of Biological Chemistry.

[142]  G. Lust,et al.  Insulin-like growth factor-I enhances cell-based repair of articular cartilage. , 2002, The Journal of bone and joint surgery. British volume.

[143]  Sankar Ghosh,et al.  Negative Regulation of Toll-like Receptor-mediated Signaling by Tollip* , 2002, The Journal of Biological Chemistry.

[144]  S. Müller,et al.  Members of the PIAS family act as SUMO ligases for c-Jun and p53 and repress p53 activity , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[145]  S. Jimenez,et al.  Assessment of the gene expression profile of differentiated and dedifferentiated human fetal chondrocytes by microarray analysis. , 2002, Arthritis and rheumatism.

[146]  I. Shapiro,et al.  Matrix Regulation of Skeletal Cell Apoptosis II: Role of Arg‐Gly‐Asp‐Containing Peptides , 2002, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[147]  C. López-Otín,et al.  A regulatory cascade involving retinoic acid, Cbfa1, and matrix metalloproteinases is coupled to the development of a process of perichondrial invasion and osteogenic differentiation during bone formation , 2001, The Journal of cell biology.

[148]  H. Suzuki,et al.  Involvement of MAP kinase cascades in Smad7 transcriptional regulation. , 2001, Biochemical and biophysical research communications.

[149]  T Kobayashi,et al.  Hypoxia in cartilage: HIF-1alpha is essential for chondrocyte growth arrest and survival. , 2001, Genes & development.

[150]  M. Hochstrasser SP-RING for SUMO New Functions Bloom for a Ubiquitin-like Protein , 2001, Cell.

[151]  D. Guidolin,et al.  Anti-Fas-induced apoptosis in chondrocytes reduced by hyaluronan: evidence for CD44 and CD54 (intercellular adhesion molecule 1) invovement. , 2001, Arthritis and rheumatism.

[152]  P. Tak,et al.  Inhibitor of nuclear factor κB kinase β is a key regulator of synovial inflammation , 2001 .

[153]  D. Sonal Prevention of IGF-1 and TGFbeta stimulated type II collagen and decorin expression by bFGF and identification of IGF-1 mRNA transcripts in articular chondrocytes. , 2001, Matrix biology : journal of the International Society for Matrix Biology.

[154]  G. E. Davis,et al.  A putative protein inhibitor of activated STAT (PIASy) interacts with p53 and inhibits p53-mediated transactivation but not apoptosis , 2001, Apoptosis.

[155]  T. Pufe,et al.  The splice variants VEGF121 and VEGF189 of the angiogenic peptide vascular endothelial growth factor are expressed in osteoarthritic cartilage. , 2001, Arthritis and rheumatism.

[156]  R. Hay,et al.  SUMO-1 Conjugation in Vivo Requires Both a Consensus Modification Motif and Nuclear Targeting* , 2001, The Journal of Biological Chemistry.

[157]  Sergei S Makarov,et al.  NF-kappaB in rheumatoid arthritis: a pivotal regulator of inflammation, hyperplasia, and tissue destruction , 2001, Arthritis research.

[158]  Thomas Aigner,et al.  Articular cartilage and changes in Arthritis: Cell biology of osteoarthritis , 2001, Arthritis Research & Therapy.

[159]  M. Harmand,et al.  Apoptosis in normal and osteoarthritic human articular cartilage , 2000, Annals of the rheumatic diseases.

[160]  S. Emr,et al.  Autophagy as a regulated pathway of cellular degradation. , 2000, Science.

[161]  Hirofumi Tanaka,et al.  A novel mammalian Smt3-specific isopeptidase 1 (SMT3IP1) localized in the nucleolus at interphase. , 2000, European journal of biochemistry.

[162]  F. Martinon,et al.  Tollip, a new component of the IL-1RI pathway, links IRAK to the IL-1 receptor , 2000, Nature Cell Biology.

[163]  A. Dejean,et al.  c-Jun and p53 Activity Is Modulated by SUMO-1 Modification* , 2000, The Journal of Biological Chemistry.

[164]  E. Yeh,et al.  Ubiquitin-like proteins: new wines in new bottles. , 2000, Gene.

[165]  H. Hamada,et al.  Differential regulation of Fas-mediated apoptosis of rheumatoid synoviocytes by tumor necrosis factor alpha and basic fibroblast growth factor is associated with the expression of apoptosis-related molecules. , 2000, Arthritis and rheumatism.

[166]  J. Kourí,et al.  Apoptotic chondrocytes from osteoarthrotic human articular cartilage and abnormal calcification of subchondral bone. , 2000, The Journal of rheumatology.

[167]  H. Saitoh,et al.  Functional Heterogeneity of Small Ubiquitin-related Protein Modifiers SUMO-1 versus SUMO-2/3* , 2000, The Journal of Biological Chemistry.

[168]  U. Müller-Ladner,et al.  Expression of sentrin, a novel antiapoptotic molecule, at sites of synovial invasion in rheumatoid arthritis. , 2000, Arthritis and rheumatism.

[169]  T. Tsukazaki,et al.  Apoptosis of articular chondrocytes in rheumatoid arthritis and osteoarthritis: correlation of apoptosis with degree of cartilage destruction and expression of apoptosis-related proteins of p53 and c-myc , 2000, Journal of orthopaedic science : official journal of the Japanese Orthopaedic Association.

[170]  E. Yeh,et al.  Differential Regulation of Sentrinized Proteins by a Novel Sentrin-specific Protease* , 2000, The Journal of Biological Chemistry.

[171]  K. Choe,et al.  Apoptotic chondrocyte death in human osteoarthritis. , 2000, The Journal of rheumatology.

[172]  M. Kondo,et al.  15-deoxy-Δ12,14-PGJ2 induces synoviocyte apoptosis and suppresses adjuvant-induced arthritis in rats , 2000 .

[173]  A. Hengstermann,et al.  Activation of p53 by conjugation to the ubiquitin‐like protein SUMO‐1 , 1999, The EMBO journal.

[174]  R. Hay,et al.  SUMO‐1 modification activates the transcriptional response of p53 , 1999, The EMBO journal.

[175]  A. Nixon,et al.  Enhanced repair of extensive articular defects by insulin‐like growth factor‐I‐laden fibrin composites , 1999, Journal of Orthopaedic Research.

[176]  R. Hay,et al.  Identification of the Enzyme Required for Activation of the Small Ubiquitin-like Protein SUMO-1* , 1999, The Journal of Biological Chemistry.

[177]  R. Honda,et al.  In vitro SUMO-1 modification requires two enzymatic steps, E1 and E2. , 1999, Biochemical and biophysical research communications.

[178]  R. Hay,et al.  SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. , 1998, Molecular cell.

[179]  R. Terkeltaub,et al.  Chondrocyte-derived apoptotic bodies and calcification of articular cartilage. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[180]  F. Blanco,et al.  Osteoarthritis chondrocytes die by apoptosis. A possible pathway for osteoarthritis pathology. , 1998, Arthritis and rheumatism.

[181]  R. Hay,et al.  Ubch9 conjugates SUMO but not ubiquitin , 1997, FEBS letters.

[182]  M. Lotz,et al.  Fas/Fas ligand expression and induction of apoptosis in chondrocytes. , 1997, Arthritis and rheumatism.

[183]  H. Helminen,et al.  Apoptosis of chondrocytes in transgenic mice lacking collagen II. , 1997, Experimental cell research.

[184]  L. Singh,et al.  The Role of Conserved Amino Acid Motifs within the Integrin β3 Cytoplasmic Domain in Triggering Focal Adhesion Kinase Phosphorylation* , 1997, The Journal of Biological Chemistry.

[185]  A. Nordheim,et al.  MAP kinase-dependent transcriptional coactivation by Elk-1 and its cofactor CBP. , 1996, Biochemical and biophysical research communications.

[186]  E. Yeh,et al.  Protection against Fas/APO-1- and tumor necrosis factor-mediated cell death by a novel protein, sentrin. , 1996, Journal of immunology.

[187]  E. Gravallese,et al.  Nuclear factor-kappa B in rheumatoid synovium. Localization of p50 and p65. , 1995, Arthritis and rheumatism.

[188]  J. Parsons,et al.  Focal adhesion kinase and paxillin bind to peptides mimicking beta integrin cytoplasmic domains , 1995, The Journal of cell biology.

[189]  C. Slaughter,et al.  ERK phosphorylation potentiates Elk‐1‐mediated ternary complex formation and transactivation. , 1995, The EMBO journal.

[190]  J. Parsons,et al.  Identification of sequences required for the efficient localization of the focal adhesion kinase, pp125FAK, to cellular focal adhesions , 1993, The Journal of cell biology.

[191]  R. Treisman,et al.  The SRF accessory protein Elk-1 contains a growth factor-regulated transcriptional activation domain , 1993, Cell.

[192]  J. Pelletier,et al.  Expression of c‐fos, c‐jun, jun‐B, metallothionein and metalloproteinase genes in human chondrocyte , 1992, FEBS letters.

[193]  F. Epstein,et al.  Rheumatoid arthritis. Pathophysiology and implications for therapy. , 1990, The New England journal of medicine.

[194]  H. Mankin,et al.  Growth factor stimulation of adult articular cartilage , 1989, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[195]  F. Luyten,et al.  Insulin-like growth factors maintain steady-state metabolism of proteoglycans in bovine articular cartilage explants. , 1988, Archives of biochemistry and biophysics.

[196]  M. Karin,et al.  Phorbol ester-inducible genes contain a common cis element recognized by a TPA-modulated trans-acting factor , 1987, Cell.

[197]  H. Fleisch,et al.  Effect of insulin-like growth factor on collagen and glycosaminoglycan synthesis by rabbit articular chondrocytes in culture , 1982, Experientia.

[198]  K. Ogata,et al.  Subchondral route for nutrition to articular cartilage in the rabbit. Measurement of diffusion with hydrogen gas in vivo. , 1978, The Journal of bone and joint surgery. American volume.

[199]  K Lund-Olesen,et al.  Oxygen tension in synovial fluids. , 1970, Arthritis and rheumatism.

[200]  M. Hahne,et al.  Cell Death , 2010, Cell Death and Differentiation.

[201]  S. Chubinskaya,et al.  Effect of interleukin-1beta on osteogenic protein 1-induced signaling in adult human articular chondrocytes. , 2009, Arthritis and rheumatism.

[202]  G. Gill,et al.  Regulation of transcription factor activity by SUMO modification. , 2009, Methods in molecular biology.

[203]  T. Vellai Autophagy genes and ageing , 2009, Cell Death and Differentiation.

[204]  S. Sébillaud,et al.  [Pathophysiological relevance of peroxisome proliferators activated receptors (PPAR) to joint diseases - the pro and con of agonists]. , 2008, Journal de la Societe de biologie.

[205]  S. Miyamoto,et al.  SUMO and NF-kappaB ties. , 2007, Cellular and molecular life sciences : CMLS.

[206]  P. ten Dijke,et al.  Negative regulation of TGF-beta receptor/Smad signal transduction. , 2007, Current opinion in cell biology.

[207]  Jinke Cheng,et al.  SUMO-specific protease 1 is essential for stabilization of HIF1alpha during hypoxia. , 2007, Cell.

[208]  S. Jimenez,et al.  NF-kappaB as a potential therapeutic target in osteoarthritis and rheumatoid arthritis. , 2006, Osteoarthritis and cartilage.

[209]  J. Buckwalter,et al.  Post-traumatic osteoarthritis: the role of accelerated chondrocyte senescence. , 2004, Biorheology.

[210]  Joseph A. Buckwalter,et al.  Aging, articular cartilage chondrocyte senescence and osteoarthritis , 2004, Biogerontology.

[211]  A. Grodzinsky,et al.  Mechanical overload induces VEGF in cartilage discs via hypoxia-inducible factor. , 2004, The American journal of pathology.

[212]  Kyu-Won Kim,et al.  Sumoylation increases HIF-1alpha stability and its transcriptional activity. , 2004, Biochemical and biophysical research communications.

[213]  Yan Zhang,et al.  A functional variant of SUMO4, a new I kappa B alpha modifier, is associated with type 1 diabetes. , 2004, Nature genetics.

[214]  Yun-Jin Jung,et al.  IL-1beta-mediated up-regulation of HIF-1alpha via an NFkappaB/COX-2 pathway identifies HIF-1 as a critical link between inflammation and oncogenesis. , 2003, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[215]  V. Goldberg,et al.  Hydrostatic pressure induces apoptosis in human chondrocytes from osteoarthritic cartilage through up‐regulation of tumor necrosis factor‐α, inducible nitric oxide synthase, p53, c‐myc, and bax‐α, and suppression of bcl‐2 , 2002, Journal of cellular biochemistry.

[216]  J. Berger,et al.  The mechanisms of action of PPARs. , 2002, Annual review of medicine.

[217]  P. Tak,et al.  Inhibitor of nuclear factor kappaB kinase beta is a key regulator of synovial inflammation. , 2001, Arthritis and rheumatism.

[218]  M. Kondo,et al.  15-deoxy-delta(12,14)-PGJ(2) induces synoviocyte apoptosis and suppresses adjuvant-induced arthritis in rats. , 2000, The Journal of clinical investigation.

[219]  A. Dejean,et al.  Conjugation with the ubiquitin‐related modifier SUMO‐1 regulates the partitioning of PML within the nucleus , 1998, The EMBO journal.

[220]  A. Manning,et al.  AP-1 and NF-kappaB regulation in rheumatoid arthritis and murine collagen-induced arthritis. , 1998, Autoimmunity.