Robotic micromanipulation for microassembly: modelling by sequencial function chart and achievement by multiple scale visual servoings

The paper investigates robotic assembly by focusing on the manipulation of microparts. This task is formalized through the notion of basic tasks which are organized in a logical sequence represented by a function chart and interpreted as the model of the behavior of the experimental setup. The latter includes a robotic system, a gripping system, an imaging system, and a clean environment. The imaging system is a photon videomicroscope able to work at multiple scales. It is modelled by a linear projective model where the relation between the scale factor and the magnification or zoom is explicitly established. So, the usual visual control law is modified in order to take into account this relation. The manipulation of some silicon microparts (400 μm × 400 μm × 100 μm) by means of a distributed robotic system (xyθ system, φz system), a two-finger gripping system and a controllable zoom and focus videomicroscope shows the relevance of the concepts. The 30% of failure rate comes mainly from the physical phenomena (electrostatic and capillary forces) instead of the accuracy of control or the occultations of microparts.

[1]  Bradley J. Nelson,et al.  Optomechatronic design of microassembly systems for manufacturing hybrid microsystems , 2005, IEEE Transactions on Industrial Electronics.

[2]  Yu Zhou,et al.  Force and Vision Feedback for Robotic Manipulation of the Microworld , 1999, ISER.

[3]  T Fukuda,et al.  Micromanipulation and Robotic Technology , 1998 .

[4]  Hyungsuck Cho,et al.  Microassembly of peg and hole using active zooming , 2005, International Symposium on Optomechatronic Technologies.

[5]  W.T. Sun,et al.  Image-based visual servo for micromanipulation: a multiple-view and multiple-scale approach , 2004, Micro-Nanomechatronics and Human Science, 2004 and The Fourth Symposium Micro-Nanomechatronics for Information-Based Society, 2004..

[6]  Richard De La Rue Photonic crystals: Microassembly in 3D. , 2003, Nature materials.

[7]  Nicolas Chaillet,et al.  Overview of Microgrippers and Design of a Micromanipulation Station Based on a MMOC Microgripper , 2005, 2005 International Symposium on Computational Intelligence in Robotics and Automation.

[8]  K. Tsuchiya,et al.  Micro assembly and micro bonding in Nano Manufactuaring World , 1999 .

[9]  Eniko T. Enikov,et al.  Micro-Assembly and Packaging of MEMS Using Optically Transparent Electrostatic Gripper , 2004 .

[10]  John T. Feddema,et al.  Visual servoing and CAD-driven microassembly , 1998, IEEE Robotics Autom. Mag..

[11]  W. Cleghorn,et al.  Microassembly of 3-D microstructures using a compliant, passive microgripper , 2004, Journal of Microelectromechanical Systems.

[12]  Ronald S. Fearing,et al.  Survey of sticking effects for micro parts handling , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[13]  Wenhui Wang,et al.  Robust Contact Detection in Micromanipulation Using Computer Vision Microscopy , 2006, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.

[14]  S. Hutchinson,et al.  Visual Servo Control Part II : Advanced Approaches , 2007 .

[15]  Richard M. De La Rue,et al.  Photonic crystals: Microassembly in 3D. , 2003 .

[16]  Sun Lining,et al.  Hybrid Control of Vision and Force for MEMS Assembly System , 2004 .

[17]  Rajagopalan Devanathan,et al.  Multi View and Multi Scale Image Based Visual Servo For Micromanipulation , 2005, Innovations in Robot Mobility and Control.

[18]  Nikolai Dechev,et al.  Construction of a 3D MEMS Microcoil Using Sequential Robotic Microassembly Operations , 2003 .

[19]  M. Ghovanloo,et al.  A three-dimensional microassembly structure for micromachined planar microelectrode arrays , 2005, 2005 3rd IEEE/EMBS Special Topic Conference on Microtechnology in Medicine and Biology.

[20]  Makoto Tanaka Development of desktop machining microfactory , 2001 .

[21]  Deok-Ho Kim,et al.  A flexible microassembly system based on hybrid manipulation scheme for manufacturing photonics components , 2006 .

[22]  Jie Zou,et al.  Reconfigurable micro-assembly system for photonics applications , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[23]  Bradley J. Nelson,et al.  Autofocusing algorithm selection in computer microscopy , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[24]  Nozomu Mishima,et al.  Microfactory—Concept, History, and Developments , 2004 .

[25]  François Chaumette,et al.  Visual servo control. I. Basic approaches , 2006, IEEE Robotics & Automation Magazine.

[26]  Bradley J. Nelson,et al.  Micropositioning of a weakly calibrated microassembly system using coarse-to-fine visual servoing strategies , 2000 .

[27]  Lining Sun,et al.  Hybrid Control of Vision and Force for MEMS Assembly System , 2004, ROBIO.

[28]  Xinhan Huang,et al.  Three-Layered Control Architecture for Microassembly with Human-Robot Task Plan Interaction , 2004, 2004 IEEE International Conference on Robotics and Biomimetics.

[29]  Dan O. Popa,et al.  Micro and Mesoscale Robotic Assembly , 2004 .

[30]  H. Miyazaki,et al.  Microassembly of semiconductor three-dimensional photonic crystals , 2003, Nature materials.

[31]  Seth Hutchinson,et al.  Visual Servo Control Part I: Basic Approaches , 2006 .

[32]  T. Udeshi,et al.  Manufacturable MEMS microcolumn , 2005 .

[33]  Bradley J. Nelson,et al.  A Supervisory Wafer-Level 3D Microassembly System for Hybrid MEMS Fabrication , 2003, J. Intell. Robotic Syst..

[34]  B. Nelson,et al.  Calibration of a parametric model of an optical microscope , 1999 .

[35]  Lining Sun,et al.  A Flexible Experimental System for Complex Microassembly under Microscale Force and Vision-Based Control , 2007 .

[36]  Geraldo F. Silveira,et al.  Real-time Visual Tracking under Arbitrary Illumination Changes , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[37]  François Chaumette,et al.  Visual servo control. II. Advanced approaches [Tutorial] , 2007, IEEE Robotics & Automation Magazine.

[38]  Jacques Jacot,et al.  A Flexible Microassembly Cell for Small and Medium Sized Batches , 2002 .

[39]  T. Udeshi,et al.  Assembly sequence planning for automated micro assembly , 2005, (ISATP 2005). The 6th IEEE International Symposium on Assembly and Task Planning: From Nano to Macro Assembly and Manufacturing, 2005..

[40]  Ezio Malis,et al.  Improving vision-based control using efficient second-order minimization techniques , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[41]  Sergej Fatikow,et al.  A Flexible Microrobot-Based Microassembly Station , 2000, J. Intell. Robotic Syst..

[42]  Wolfgang Birkfellner,et al.  A fully automated calibration method for an optical see-through head-mounted operating microscope with variable zoom and focus , 2005, IEEE Transactions on Medical Imaging.

[43]  Kensuke Tsuchiya,et al.  Microassembly and microbonding in Nano Manufacturing World , 1999, Optics East.

[44]  Mehdi Ammi,et al.  Flexible Microscope Calibration using Virtual Pattern for 3-D Telemicromanipulation , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[45]  Yu Zhou,et al.  Integrating Optical Force Sensing with Visual Servoing for Microassembly , 2000, J. Intell. Robotic Syst..

[46]  Lining Sun,et al.  Task-Reconfigurable System for MEMS Assembly , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[47]  Paolo Dario,et al.  Flip chip microassembly of a silicon triaxial force sensor on flexible substrates , 2008 .

[48]  Scott Clark,et al.  Micro-assembly cell with dual optical/computer vision control for electrostatic gripping of MEMS , 2003, SPIE Optics East.

[49]  Gwi-Tae Park,et al.  Multiple magnification images based micropositioning for 3D micro assembly , 2002, 7th International Conference on Control, Automation, Robotics and Vision, 2002. ICARCV 2002..