Constants in Discrete Poincaré and Friedrichs Inequalities and Discrete Quasi-Interpolation
暂无分享,去创建一个
[1] Carsten Carstensen,et al. Guaranteed lower bounds for eigenvalues , 2014, Math. Comput..
[2] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[3] Tosio Kato. Estimation of Iterated Matrices, with application to the von Neumann condition , 1960 .
[4] Carsten Carstensen,et al. Axioms of adaptivity , 2013, Comput. Math. Appl..
[5] Hella Rabus,et al. Quasi-optimal convergence of AFEM based on separate marking, Part II , 2015, J. Num. Math..
[6] Hella Rabus. Quasi-optimal convergence of AFEM based on separate marking, Part I , 2015 .
[7] Sui Sun Cheng,et al. EXPLICIT EIGENVALUES AND INVERSES OF TRIDIAGONAL TOEPLITZ MATRICES WITH FOUR PERTURBED CORNERS , 2008, The ANZIAM Journal.
[8] Carsten Carstensen,et al. Axioms of adaptivity for separate marking , 2016, 1606.02165.
[9] ROB STEVENSON,et al. The completion of locally refined simplicial partitions created by bisection , 2008, Math. Comput..
[10] Rob P. Stevenson,et al. A Remark on Newest Vertex Bisection in Any Space Dimension , 2014, Comput. Methods Appl. Math..
[11] Carsten Carstensen,et al. Discrete Reliability for Crouzeix-Raviart FEMs , 2013, SIAM J. Numer. Anal..
[12] Carsten Carstensen,et al. The Adaptive Nonconforming FEM for the Pure Displacement Problem in Linear Elasticity is Optimal and Robust , 2012, SIAM J. Numer. Anal..
[13] Carsten Carstensen,et al. Explicit Error Estimates for Courant, Crouzeix-Raviart and Raviart-Thomas Finite Element Methods , 2012 .
[14] Christian Kreuzer,et al. Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method , 2008, SIAM J. Numer. Anal..
[15] R. Laugesen,et al. Minimizing Neumann fundamental tones of triangles: An optimal Poincaré inequality , 2009, 0907.1552.
[16] Carsten Carstensen,et al. Guaranteed lower eigenvalue bounds for the biharmonic equation , 2014, Numerische Mathematik.