Constants in Discrete Poincaré and Friedrichs Inequalities and Discrete Quasi-Interpolation

Abstract This paper provides a discrete Poincaré inequality in n space dimensions on a simplex K with explicit constants. This inequality bounds the norm of the piecewise derivative of functions with integral mean zero on K and all integrals of jumps zero along all interior sides by its Lebesgue norm times C ⁢ ( n ) ⁢ diam ⁡ ( K ) {C(n)\operatorname{diam}(K)} . The explicit constant C ⁢ ( n ) {C(n)} depends only on the dimension n = 2 , 3 {n=2,3} in case of an adaptive triangulation with the newest vertex bisection. The second part of this paper proves the stability of an enrichment operator, which leads to the stability and approximation of a (discrete) quasi-interpolator applied in the proofs of the discrete Friedrichs inequality and discrete reliability estimate with explicit bounds on the constants in terms of the minimal angle ω 0 {\omega_{0}} in the triangulation. The analysis allows the bound of two constants Λ 1 {\Lambda_{1}} and Λ 3 {\Lambda_{3}} in the axioms of adaptivity for the practical choice of the bulk parameter with guaranteed optimal convergence rates.

[1]  Carsten Carstensen,et al.  Guaranteed lower bounds for eigenvalues , 2014, Math. Comput..

[2]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[3]  Tosio Kato Estimation of Iterated Matrices, with application to the von Neumann condition , 1960 .

[4]  Carsten Carstensen,et al.  Axioms of adaptivity , 2013, Comput. Math. Appl..

[5]  Hella Rabus,et al.  Quasi-optimal convergence of AFEM based on separate marking, Part II , 2015, J. Num. Math..

[6]  Hella Rabus Quasi-optimal convergence of AFEM based on separate marking, Part I , 2015 .

[7]  Sui Sun Cheng,et al.  EXPLICIT EIGENVALUES AND INVERSES OF TRIDIAGONAL TOEPLITZ MATRICES WITH FOUR PERTURBED CORNERS , 2008, The ANZIAM Journal.

[8]  Carsten Carstensen,et al.  Axioms of adaptivity for separate marking , 2016, 1606.02165.

[9]  ROB STEVENSON,et al.  The completion of locally refined simplicial partitions created by bisection , 2008, Math. Comput..

[10]  Rob P. Stevenson,et al.  A Remark on Newest Vertex Bisection in Any Space Dimension , 2014, Comput. Methods Appl. Math..

[11]  Carsten Carstensen,et al.  Discrete Reliability for Crouzeix-Raviart FEMs , 2013, SIAM J. Numer. Anal..

[12]  Carsten Carstensen,et al.  The Adaptive Nonconforming FEM for the Pure Displacement Problem in Linear Elasticity is Optimal and Robust , 2012, SIAM J. Numer. Anal..

[13]  Carsten Carstensen,et al.  Explicit Error Estimates for Courant, Crouzeix-Raviart and Raviart-Thomas Finite Element Methods , 2012 .

[14]  Christian Kreuzer,et al.  Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method , 2008, SIAM J. Numer. Anal..

[15]  R. Laugesen,et al.  Minimizing Neumann fundamental tones of triangles: An optimal Poincaré inequality , 2009, 0907.1552.

[16]  Carsten Carstensen,et al.  Guaranteed lower eigenvalue bounds for the biharmonic equation , 2014, Numerische Mathematik.