Techniques in Computational Stochastic Dynamic Programming

Differential dynamic programming (DDP) is a variant of dynamic programming in which a quadratic approximation of the cost about a nominal state and control plays an essential role. The method uses successive approximations and expansions in differentials or increments to obtain a solution of optimal control problems. The DDP method is due to Mayne [11, 8]. DDP is primarily used in deterministic problems in discrete time, although there are many variations. Mayne [11] in his original paper did give a straight-forward extension to continuous time problems, while Jacobson and Mayne [8] present several stochastic variations. The mathematical basis for DDP is given by Mayne in [12], along the relations between dynamic programming and the Hamiltonian formulation of the maximum principle. A concise, computationally oriented survey of DDP developments is given by Yakowitz [16] in an earlier volume of this series and the outline for deterministic control problems in discrete time here is roughly based on that chapter. Earlier, Yakowitz [15] surveys the use of dynamic programming in water resources applications, nicely placing DDP in the larger perspective of other dynamic programming variants. Also, Jones, Willis and Yeh [9], and Yakowitz and Rutherford [17] present brief helpful summaries with particular emphasis on the computational aspects of DDP.

[1]  C. Shoemaker,et al.  Dynamic optimal control for groundwater remediation with flexible management periods , 1992 .

[2]  David Q. Mayne,et al.  Differential Dynamic Programming–A Unified Approach to the Optimization of Dynamic Systems , 1973 .

[3]  Of references. , 1966, JAMA.

[4]  P. Lions,et al.  Two approximations of solutions of Hamilton-Jacobi equations , 1984 .

[5]  Donald L. Snyder,et al.  Random Point Processes in Time and Space , 1991 .

[6]  Stephen Fahrney McCormick Multigrid methods, theory applications, and supercomputing , 1990 .

[7]  Peter B. Luh,et al.  A new parallel algorithm for optimal control problems of interconnected systems , 1992 .

[8]  R. Luus Application of dynamic programming to high-dimensional non-linear optimal control problems , 1990 .

[9]  S. Lennart Johnsson,et al.  The Finite Element Method on a Data Parallel Computing System , 1989, Int. J. High Speed Comput..

[10]  P. G. Livingstone Future directions for control , 1991 .

[11]  Constantine D. Polychronopoulos,et al.  Parallel programming and compilers , 1988 .

[12]  Harold J. Kushner,et al.  Large-scale computations for high dimensional control systems , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[13]  Elijah Polak,et al.  Computational methods in optimization , 1971 .

[14]  Arthur E. Bryson,et al.  Applied Optimal Control , 1969 .

[15]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[16]  P. Souganidis Approximation schemes for viscosity solutions of Hamilton-Jacobi equations , 1985 .

[17]  Floyd B. Hanson,et al.  Optimal harvesting with exponential growth in an environment with random disasters and bonanzas , 1985 .

[18]  Floyd B. Hanson,et al.  A real introduction to supercomputing: a user training course , 1990, Proceedings SUPERCOMPUTING '90.

[19]  S. Dreyfus Dynamic Programming and the Calculus of Variations , 1960 .

[20]  M. K rn,et al.  Stochastic Optimal Control , 1988 .

[21]  Guy L. Steele,et al.  The High Performance Fortran Handbook , 1993 .

[22]  Gordon Bell,et al.  Ultracomputers: a teraflop before its time , 1992, CACM.

[23]  R. Larson Dynamic programming with reduced computational requirements , 1965 .

[24]  S Yakowitz,et al.  DYNAMIC PROGRAMMING APPLICATION IN WATER RESOURCES , 1982 .

[25]  R. Wait,et al.  The finite element method in partial differential equations , 1977 .

[26]  A. A. Becker The mathematics of finite elements and applications V, MAFELAP 1984: edited by J.R. Whiteman, Academic Press, London, 1985. ISBN 0-12-747255, xviii + 650 pages, hard-cover, £53 , 1989 .

[27]  Floyd B. Hanson Stochastic dynamic programming: advanced computing constructs , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[28]  Stephen R. McReynolds,et al.  The computation and theory of optimal control , 1970 .

[29]  J. J. Florentin,et al.  Optimal Control of Systems With Generalized Poisson Inputs , 1963 .

[30]  W. Fleming,et al.  Deterministic and Stochastic Optimal Control , 1975 .

[31]  D. Mayne A Second-order Gradient Method for Determining Optimal Trajectories of Non-linear Discrete-time Systems , 1966 .

[32]  G. Strang,et al.  An Analysis of the Finite Element Method , 1974 .

[33]  James W. Warner,et al.  Shortcomings of Existing Finite Element Formulations for Subsurface Water Pollution Modeling and Its Rectification: One-Dimensional Case , 1994, SIAM J. Appl. Math..

[34]  L. Jones,et al.  Optimal control of nonlinear groundwater hydraulics using differential dynamic programming , 1987 .

[35]  Zeev Schuss,et al.  Theory and Applications of Stochastic Differential Equations , 1980 .

[36]  Floyd B. Hanson,et al.  Bioeconomic Model of the Lake Michigan Alewife (Alosa pseudoharengus) Fishery , 1987 .

[37]  Richard Bellman,et al.  Adaptive Control Processes: A Guided Tour , 1961, The Mathematical Gazette.

[38]  H. H. Xu,et al.  Optimal Data Parallel Methods for Stochastic Dynamical Programming , 1991, ICPP.

[39]  Pearl Y. Wang,et al.  Finite Element Computing on Parallel Architecture , 1993 .

[40]  David Q. Mayne,et al.  Differential dynamic programming , 1972, The Mathematical Gazette.

[41]  Daniel Tylavsky,et al.  Concurrent Processing in Power System Analysis , 1991 .

[42]  Mark Overmars Forms Library-A Graphical User Interface Toolkit for Silicon Graphics Workstations , 1992 .

[43]  Joseph E. Flaherty,et al.  Numerical Methods for Stiff Systems of Two-Point Boundary Value Problems , 1984 .

[44]  F. Hanson Computational stochastic dynamic programming on a vector multiprocessor , 1991 .

[45]  Christine A. Shoemaker,et al.  OPTIMAL CONTROL FOR GROUNDWATER REMEDIATION BY DIFFERENTIAL DYNAMIC PROGRAMMING WITH QUASI-NEWTON APPROXIMATIONS , 1993 .

[46]  W. Wonham Random differential equations in control theory , 1970 .

[47]  R. Glowinski,et al.  Computing Methods in Applied Sciences and Engineering , 1974 .

[48]  J. J. Westman,et al.  Computational stochastic dynamic programming problems: groundwater quality remediation , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[49]  Paul O. Frederickson,et al.  Parallel Superconvergent Multigrid , 1987 .

[50]  Christine A. Shoemaker,et al.  Parallel Processing of Large Scale Discrete-Time Unconstrained Differential Dynamic Programming , 1993, Parallel Comput..

[51]  Floyd B. Hanson,et al.  Applications of FORALL-formed computations in large scale stochastic dynamic programming , 1992, Proceedings Scalable High Performance Computing Conference SHPCC-92..

[52]  Hans Werner Meuer,et al.  Top500 Supercomputer Sites , 1997 .

[53]  S. Yakowitz,et al.  Differential dynamic programming and Newton's method for discrete optimal control problems , 1984 .

[54]  S. Yakowitz,et al.  Computational aspects of discrete-time optimal control , 1984 .

[55]  L. Liao,et al.  Convergence in unconstrained discrete-time differential dynamic programming , 1991 .

[56]  S. Yakowitz Dynamic programming applications in water resources , 1982 .

[57]  R. Larson,et al.  Dynamic programming and parallel computers , 1973 .

[58]  I. H. Mufti Computational methods in optimal control problems , 1970 .

[59]  John M. Levesque,et al.  A guidebook to Fortran on supercomputers , 1989 .

[60]  Floyd B. Hanson,et al.  OPTIMAL HARVESTING WITH DENSITY DEPENDENT RANDOM EFFECTS , 1988 .

[61]  D. J. Jarvis,et al.  Parallel Data Vault Methods for Larger Scale Stochastic Dynamic Programming , 1992, 1992 American Control Conference.

[62]  Steven K. Feiner,et al.  Visualizing n-dimensional virtual worlds with n-vision , 1990, I3D '90.

[63]  Jim Kerrigan Migrating to Fortran 90 , 1993 .

[64]  Michael Athans,et al.  The stochastic control of the F-8C aircraft using a multiple model adaptive control (MMAC) method--Part I: Equilibrium flight , 1977 .

[65]  S. Shreve,et al.  Stochastic differential equations , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[66]  Donald Ludwig,et al.  Optimal Harvesting of a Randomly Fluctuating Resource. I: Application of Perturbation Methods , 1979 .

[67]  J. L. Calvet,et al.  A Fast Parallel Dynamic Programming Algorithm for Optimal Control , 1990 .

[68]  Robert E. Larson,et al.  State increment dynamic programming , 1968 .

[69]  H. H. Xu,et al.  Multidimensional Visualization Applied to Renewable Resource Management , 1993, PPSC.

[70]  J. L. Calvet,et al.  Vectorization and multitasking of dynamic programming in control: experiments on a CRAY-2 , 1990, Parallel Comput..

[71]  E. Polak An historical survey of computational methods in optimal control. , 1973 .

[72]  Floyd B. Hanson,et al.  Supercomputer optimizations for stochastic optimal control applications , 1991 .

[73]  F. Hanson,et al.  Optimal harvesting of a logistic population in an environment with stochastic jumps , 1986, Journal of mathematical biology.

[74]  Sidney Yakowitz,et al.  Algorithms and Computational Techniques in Differential Dynamic Programming , 1989 .

[75]  R. Larson,et al.  A survey of dynamic programming computational procedures , 1967, IEEE Transactions on Automatic Control.

[76]  Robert D. Russell,et al.  Collocation Software for Boundary-Value ODEs , 1981, TOMS.

[77]  Thomas Sterling,et al.  System software and tools for high performance computing environments , 1995 .

[78]  Floyd B. Hanson,et al.  Convergence of Numerical Method for Multistate Stochastic Dynamic Programming , 1993 .

[79]  C. Shoemaker,et al.  Optimal time-varying pumping rates for groundwater remediation: Application of a constrained optimal control algorithm , 1992 .

[80]  H. H. Xu,et al.  Visualization for the management of renewable resources in an uncertain environment , 1992, Proceedings Supercomputing '92.

[81]  B. Anderson,et al.  Optimal control: linear quadratic methods , 1990 .

[82]  Floyd B. Hanson,et al.  Optimization techniques for stochastic dynamic programming , 1990, 29th IEEE Conference on Decision and Control.

[83]  I. Gihman,et al.  Controlled Stochastic Processes , 1979 .

[84]  J. Douglas,et al.  Galerkin Methods for Parabolic Equations , 1970 .

[85]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[86]  Harold J. Kushner,et al.  A Survey of Some Applications of Probability and Stochastic Control Theory to Finite Difference Methods for Degenerate Elliptic and Parabolic Equations , 1976 .

[87]  Floyd B. Hanson,et al.  Parallel Optimizations for Computational Stochastic Dynamic Programming , 1990, ICPP.

[88]  R. Bellman Dynamic programming. , 1957, Science.

[89]  Henry C. Tuckwell,et al.  Logistic Growth with Random Density Independent Disasters , 1981 .

[90]  Donald Ludwig,et al.  Optimal Harvesting of a Randomly Fluctuating Resource. II: Numerical Methods and Results , 1979 .

[91]  U. Ascher,et al.  A collocation solver for mixed order systems of boundary value problems , 1979 .

[92]  R. Luus Optimal control by dynamic programming using systematic reduction in grid size , 1990 .

[93]  Floyd B. Hanson Analysis of a Singular Functional Differential Equation That Arises from Stochastic Modeling of Population Growth , 1983 .

[94]  Alvin M. Despain,et al.  A national computing initiative: the agenda for leadership , 1987 .

[95]  F. Hanson,et al.  Numerical convergence for the Bellman equation of stochastic optimal control with quadratic costs and constraints , 1993 .

[96]  Alan Feldstein,et al.  High Order Methods for State-Dependent Delay Differential Equations with Nonsmooth Solutions , 1984 .

[97]  E. Renshaw,et al.  STOCHASTIC DIFFERENTIAL EQUATIONS , 1974 .

[98]  Jean-Philippe Chancelier,et al.  Dynamic programming complexity and application , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[99]  S. Chung,et al.  Parallel stochastic dynamic programming: finite element methods , 1992 .

[100]  G. Horton,et al.  A Space-time Multigrid Method for Parabolic Pdes , 1993 .

[101]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[102]  S. Lennart Johnsson,et al.  Data structures and algorithms for the finite element method on a data parallel supercomputer , 1990 .

[103]  John R. Rice,et al.  The Performance of the Collocation and Galerkin Methods with Hermite Bi-Cubics , 1984 .

[104]  Graham Horton,et al.  A Space-Time Multigrid Method for Parabolic Partial Differential Equations , 1995, SIAM J. Sci. Comput..

[105]  Jack J. Dongarra,et al.  Solving linear systems on vector and shared memory computers , 1990 .

[106]  Harold J. Kushner,et al.  A Numerical Method for Controlled Routing in Large Trunk Line Networks via Stochastic Control Theory , 1994, INFORMS J. Comput..

[107]  Naomi H. Decker,et al.  Note on the Parallel Efficiency of the Frederickson-McBryan Multigrid Algorithm , 1990, SIAM J. Sci. Comput..

[108]  A. T. Bharucha-Reid,et al.  Probabilistic methods in applied mathematics , 1968 .