Massively Scaling the Metal Microscopic Damage Simulation on Sunway TaihuLight Supercomputer

The limitation of simulation scales leads to a gap between simulation results and physical phenomena. This paper reports our efforts on increasing the scalability of metal material microscopic damage simulation on the Sunway TaihuLight supercomputer. We use a multiscale modeling approach that couples Molecular Dynamics (MD) with Kinetic Monte Carlo (KMC). According to the characteristics of metal materials, we design a dedicated data structure to record the neighbor atoms for MD, which significantly reduces the memory consumption. Data compaction and double buffer are used to reduce the data transfer overhead between the main memory and the local store. We propose an on-demand communication strategy for KMC to remarkably reduce the communication overhead. We simulate 4 * 1012 atoms on 6,656,000 master+slave cores using MD with 85% parallel efficiency. Using the coupled MD-KMC approach, we simulate 3.2 * 1010 atoms in 19.2 days temporal scale on 6,240,000 master+slave cores with runtime of 8.6 hours.

[1]  Changjun Hu,et al.  Crystal MD: The massively parallel molecular dynamics software for metal with BCC structure , 2017, Comput. Phys. Commun..

[2]  Peter V. Coveney,et al.  Large-scale molecular dynamics simulation of DNA: implementation and validation of the AMBER98 force field in LAMMPS , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[3]  Kenli Li,et al.  Implementing Molecular Dynamics Simulation on Sunway TaihuLight System , 2016, 2016 IEEE 18th International Conference on High Performance Computing and Communications; IEEE 14th International Conference on Smart City; IEEE 2nd International Conference on Data Science and Systems (HPCC/SmartCity/DSS).

[4]  Jacques G. Amar,et al.  Semirigorous synchronous sublattice algorithm for parallel kinetic Monte Carlo simulations of thin film growth , 2005 .

[5]  M. Baskes,et al.  Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .

[6]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[7]  Ignacio Martin-Bragado,et al.  MMonCa: An Object Kinetic Monte Carlo simulator for damage irradiation evolution and defect diffusion , 2013, Comput. Phys. Commun..

[8]  M. I. Pascuet,et al.  Modeling the first stages of Cu precipitation in α-Fe using a hybrid atomistic kinetic Monte Carlo approach. , 2011, The Journal of chemical physics.

[9]  Sameer Abu Asal,et al.  CoMD Implementation Suite in Emerging Programming Models , 2014 .

[10]  John D. Owens,et al.  GPU Computing , 2008, Proceedings of the IEEE.

[11]  B. Wirth,et al.  MD and KMC modeling of the growth and shrinkage mechanisms of helium–vacancy clusters in Fe , 2003 .

[12]  Wei Ge,et al.  The Sunway TaihuLight supercomputer: system and applications , 2016, Science China Information Sciences.

[13]  F. Jiménez,et al.  A GPU-based parallel Object kinetic Monte Carlo algorithm for the evolution of defects in irradiated materials , 2016 .

[14]  C. Domain,et al.  Introducing chemistry in atomistic kinetic Monte Carlo simulations of Fe alloys under irradiation , 2010 .

[15]  Florence March,et al.  2016 , 2016, Affair of the Heart.

[16]  M.G.B. Drew,et al.  The art of molecular dynamics simulation , 1996 .

[17]  James P. Sethna,et al.  Kinetic Monte Carlo-molecular dynamics investigations of hyperthermal copper deposition on Cu(111) , 2002 .

[18]  Changjun Hu,et al.  Kernel optimization for short-range molecular dynamics , 2017, Comput. Phys. Commun..

[19]  Steven J. Plimpton,et al.  Crossing the Mesoscale No-Man's Land via Parallel Kinetic Monte Carlo , 2009 .

[20]  John A. Gunnels,et al.  100 + TFlop Solidification Simulations on BlueGene / L , 2005 .

[21]  Oleg Trushin,et al.  Parallel kinetic Monte Carlo simulations of Ag(111) island coarsening using a large database , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[22]  Message Passing Interface Forum MPI: A message - passing interface standard , 1994 .

[23]  Jörg Stadler,et al.  IMD: A Software Package for Molecular Dynamics Studies on Parallel Computers , 1997 .

[24]  Baodong Wu,et al.  Hybrid-optimization strategy for the communication of large-scale Kinetic Monte Carlo simulation , 2017, Comput. Phys. Commun..

[25]  Adel F. Sarofim,et al.  KINETIC MONTE CARLO–MOLECULAR DYNAMICS APPROACH TO MODEL SOOT INCEPTION , 2004 .

[26]  C. Svaneborg Large-scale Atomic/Molecular Massively Parallel Simulator , 2011 .

[27]  Timothy C. Germann,et al.  369 Tflop/s molecular dynamics simulations on the petaflop hybrid supercomputer ‘Roadrunner’ , 2009, Concurr. Comput. Pract. Exp..

[28]  A. James 2010 , 2011, Philo of Alexandria: an Annotated Bibliography 2007-2016.

[29]  Baodong Wu,et al.  Optimizing Parallel Kinetic Monte Carlo Simulation by Communication Aggregation and Scheduling , 2015 .

[30]  Enrico Tronci 1997 , 1997, Les 25 ans de l’OMC: Une rétrospective en photos.

[31]  Stefan Becker,et al.  ls1 mardyn: The massively parallel molecular dynamics code for large systems , 2014, Journal of chemical theory and computation.

[32]  R. Stoller,et al.  Self-evolving atomistic kinetic Monte Carlo: fundamentals and applications , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[33]  Mikael Leetmaa,et al.  KMCLib: A general framework for lattice kinetic Monte Carlo (KMC) simulations , 2014, Comput. Phys. Commun..

[34]  Paolo Bientinesi,et al.  The Vectorization of the Tersoff Multi-body Potential: An Exercise in Performance Portability , 2016, SC16: International Conference for High Performance Computing, Networking, Storage and Analysis.