Photoelectrochemical hydrogen evolution using Si microwire arrays.

Arrays of B-doped p-Si microwires, diffusion-doped with P to form a radial n(+) emitter and subsequently coated with a 1.5-nm-thick discontinuous film of evaporated Pt, were used as photocathodes for H(2) evolution from water. These electrodes yielded thermodynamically based energy-conversion efficiencies >5% under 1 sun solar simulation, despite absorbing less than 50% of the above-band-gap incident photons. Analogous p-Si wire-array electrodes yielded efficiencies <0.2%, largely limited by the low photovoltage generated at the p-Si/H(2)O junction.

[1]  Joshua M. Spurgeon,et al.  Flexible, Polymer‐Supported, Si Wire Array Photoelectrodes , 2010, Advanced materials.

[2]  Nathan S. Lewis,et al.  Si microwire-array solar cells , 2010 .

[3]  Chito Kendrick,et al.  Enhanced conversion efficiencies for pillar array solar cells fabricated from crystalline silicon with short minority carrier diffusion lengths , 2010 .

[4]  Nathan S Lewis,et al.  Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. , 2010, Nature materials.

[5]  Nathan S. Lewis,et al.  Energy-Conversion Properties of Vapor-Liquid-Solid–Grown Silicon Wire-Array Photocathodes , 2010, Science.

[6]  N. Lewis,et al.  10 μm minority-carrier diffusion lengths in Si wires synthesized by Cu-catalyzed vapor-liquid-solid growth , 2009 .

[7]  Eric L. Miller,et al.  Photoelectrolysis of water using thin copper gallium diselenide electrodes , 2008 .

[8]  Peidong Yang,et al.  Silicon nanowire radial p-n junction solar cells. , 2008, Journal of the American Chemical Society.

[9]  S. Pizzini,et al.  Effect of Pt particle size and distribution on photoelectrochemical hydrogen evolution by p-Si photocathodes. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[10]  Kok-Keong Lew,et al.  Silicon nanowire array photelectrochemical cells. , 2007, Journal of the American Chemical Society.

[11]  Nathan S. Lewis,et al.  Growth of vertically aligned Si wire arrays over large areas (>1 cm^2) with Au and Cu catalysts , 2007 .

[12]  Julian F. Randall,et al.  Fundamentals of Solar Cells , 2006 .

[13]  Nathan S. Lewis,et al.  Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells , 2005 .

[14]  N. Lewis,et al.  Trends in the open-circuit voltage of semiconductor/liquid interfaces: Studies of n-Al sub x Ga sub 1 minus x As/CH sub 3 CN-Ferrocene sup +/0 and n-Al sub x Ga sub 1 minus x As/KOH-Se sup minus /2 minus (aq) junctions , 1991 .

[15]  Y. Nakato,et al.  Tungsten‐ or Molybdenum‐Coated p‐n Junction Silicon Electrodes for Efficient and Stable Photoelectrochemical Solar Energy Conversion , 1986 .

[16]  James R. Bolton,et al.  Limiting and realizable efficiencies of solar photolysis of water , 1985, Nature.

[17]  Bruce A. Parkinson,et al.  On the efficiency and stability of photoelectrochemical devices , 1984 .

[18]  Y. Nakato,et al.  Hydrogen evolution and iodine reduction on an illuminated n-p junction silicon electrode and its application to efficient solar photoelectrolysis of hydrogen iodide , 1984 .

[19]  A. Heller Hydrogen-Evolving Solar Cells , 1984, Science.

[20]  D. J. Harrison,et al.  Electrochemical characterization of p-type semiconducting tungsten disulfide photocathodes: efficient photoreduction processes at semiconductor/liquid electrolyte interfaces , 1983 .

[21]  Adam Heller,et al.  Efficient p ‐ InP ( Rh ‐ H alloy ) and p ‐ InP ( Re ‐ H alloy ) Hydrogen Evolving Photocathodes , 1982 .

[22]  S. Trasatti Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions , 1972 .

[23]  Charles M. Lieber,et al.  Single nanowire photovoltaics. , 2009, Chemical Society reviews.

[24]  Richard H. Bube,et al.  Fundamentals of solar cells , 1983 .

[25]  N. Lewis,et al.  Improvement of photoelectrochemical hydrogen generation by surface modification of p-type silicon semiconductor photocathodes , 1982 .

[26]  B. Conway,et al.  Some aspects of the measurement of hydrogen overpotential , 1950 .