Photoelectrochemical hydrogen evolution using Si microwire arrays.
暂无分享,去创建一个
Nathan S Lewis | James R. McKone | Harry A Atwater | Elizabeth A. Santori | Daniel Turner-Evans | N. Lewis | H. Atwater | B. Brunschwig | E. Warren | S. Boettcher | M. Kelzenberg | M. C. Putnam | D. Turner-Evans | M. Walter | Bruce S Brunschwig | Shannon W Boettcher | Morgan C Putnam | Michael D Kelzenberg | Emily L Warren | Elizabeth A Santori | Michael G Walter | James R McKone
[1] Joshua M. Spurgeon,et al. Flexible, Polymer‐Supported, Si Wire Array Photoelectrodes , 2010, Advanced materials.
[2] Nathan S. Lewis,et al. Si microwire-array solar cells , 2010 .
[3] Chito Kendrick,et al. Enhanced conversion efficiencies for pillar array solar cells fabricated from crystalline silicon with short minority carrier diffusion lengths , 2010 .
[4] Nathan S Lewis,et al. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. , 2010, Nature materials.
[5] Nathan S. Lewis,et al. Energy-Conversion Properties of Vapor-Liquid-Solid–Grown Silicon Wire-Array Photocathodes , 2010, Science.
[6] N. Lewis,et al. 10 μm minority-carrier diffusion lengths in Si wires synthesized by Cu-catalyzed vapor-liquid-solid growth , 2009 .
[7] Eric L. Miller,et al. Photoelectrolysis of water using thin copper gallium diselenide electrodes , 2008 .
[8] Peidong Yang,et al. Silicon nanowire radial p-n junction solar cells. , 2008, Journal of the American Chemical Society.
[9] S. Pizzini,et al. Effect of Pt particle size and distribution on photoelectrochemical hydrogen evolution by p-Si photocathodes. , 2007, Langmuir : the ACS journal of surfaces and colloids.
[10] Kok-Keong Lew,et al. Silicon nanowire array photelectrochemical cells. , 2007, Journal of the American Chemical Society.
[11] Nathan S. Lewis,et al. Growth of vertically aligned Si wire arrays over large areas (>1 cm^2) with Au and Cu catalysts , 2007 .
[12] Julian F. Randall,et al. Fundamentals of Solar Cells , 2006 .
[13] Nathan S. Lewis,et al. Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells , 2005 .
[14] N. Lewis,et al. Trends in the open-circuit voltage of semiconductor/liquid interfaces: Studies of n-Al sub x Ga sub 1 minus x As/CH sub 3 CN-Ferrocene sup +/0 and n-Al sub x Ga sub 1 minus x As/KOH-Se sup minus /2 minus (aq) junctions , 1991 .
[15] Y. Nakato,et al. Tungsten‐ or Molybdenum‐Coated p‐n Junction Silicon Electrodes for Efficient and Stable Photoelectrochemical Solar Energy Conversion , 1986 .
[16] James R. Bolton,et al. Limiting and realizable efficiencies of solar photolysis of water , 1985, Nature.
[17] Bruce A. Parkinson,et al. On the efficiency and stability of photoelectrochemical devices , 1984 .
[18] Y. Nakato,et al. Hydrogen evolution and iodine reduction on an illuminated n-p junction silicon electrode and its application to efficient solar photoelectrolysis of hydrogen iodide , 1984 .
[19] A. Heller. Hydrogen-Evolving Solar Cells , 1984, Science.
[20] D. J. Harrison,et al. Electrochemical characterization of p-type semiconducting tungsten disulfide photocathodes: efficient photoreduction processes at semiconductor/liquid electrolyte interfaces , 1983 .
[21] Adam Heller,et al. Efficient p ‐ InP ( Rh ‐ H alloy ) and p ‐ InP ( Re ‐ H alloy ) Hydrogen Evolving Photocathodes , 1982 .
[22] S. Trasatti. Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions , 1972 .
[23] Charles M. Lieber,et al. Single nanowire photovoltaics. , 2009, Chemical Society reviews.
[24] Richard H. Bube,et al. Fundamentals of solar cells , 1983 .
[25] N. Lewis,et al. Improvement of photoelectrochemical hydrogen generation by surface modification of p-type silicon semiconductor photocathodes , 1982 .
[26] B. Conway,et al. Some aspects of the measurement of hydrogen overpotential , 1950 .