ConstrainedStabilization on the n − Sphere ?

In this note, we solve the problem of constrained stabilization on the n−dimensional unit sphere by mapping it to a navigation problem on the Euclidean space R in the presence of spherical obstacles. As a consequence, any controller that was originally designed for navigating in Euclidean sphere worlds can be used to solve the stabilization problem on the n−sphere in the presence of conic constraints. A simulation example on the 2−sphere illustrates the effectiveness of the proposed approach.

[1]  P. Alexandroff Über die Metrisation der im Kleinen kompakten topologischen Räume , 1924 .

[2]  J. Milnor,et al.  On the parallelizability of the spheres , 1958 .

[3]  F. Wilson The structure of the level surfaces of a Lyapunov function , 1967 .

[4]  R. Brockett Lie Theory and Control Systems Defined on Spheres , 1973 .

[5]  D. Koditschek,et al.  Robot navigation functions on manifolds with boundary , 1990 .

[6]  M. Shuster A survey of attitude representation , 1993 .

[7]  Panagiotis Tsiotras,et al.  Spin-axis stabilization of symmetric spacecraft with two control torques , 1994 .

[8]  Augusto Sarti,et al.  Control on the Sphere and Reduced Attitude Stabilization , 1995 .

[9]  U. Helmke,et al.  Optimization and Dynamical Systems , 1994, Proceedings of the IEEE.

[10]  K. Spindler,et al.  Attitude Maneuvers Which Avoid a Forbidden Direction , 2002 .

[11]  Olav Egeland,et al.  Swinging up the spherical pendulum via stabilization of its first integrals , 2004, Autom..

[12]  Ranjan Mukherjee,et al.  Exponential stabilization of the rolling sphere , 2004, Autom..

[13]  A. D. Lewis,et al.  Geometric control of mechanical systems : modeling, analysis, and design for simple mechanical control systems , 2005 .

[14]  Daniel M. Germán,et al.  Flattening the Viewable Sphere , 2007, CAe.

[15]  Tarek Hamel,et al.  Control of a class of thrust-propelled underactuated vehicles and application to a VTOL drone , 2009, 2009 IEEE International Conference on Robotics and Automation.

[16]  D. Bernstein Matrix Mathematics: Theory, Facts, and Formulas , 2009 .

[17]  N. McClamroch,et al.  Rigid-Body Attitude Control , 2011, IEEE Control Systems.

[18]  Andrew R. Teel,et al.  Global stabilization of spherical orientation by synergistic hybrid feedback with application to reduced-attitude tracking for rigid bodies , 2013, Autom..

[19]  Mehran Mesbahi,et al.  Feedback control for spacecraft reorientation under attitude constraints via convex potentials , 2014, IEEE Transactions on Aerospace and Electronic Systems.

[20]  Guofan Wu,et al.  Safety-critical and constrained geometric control synthesis using control Lyapunov and control Barrier functions for systems evolving on manifolds , 2015, 2015 American Control Conference (ACC).

[21]  Pedro Casau,et al.  Global exponential stabilization on the n-dimensional sphere , 2015, 2015 American Control Conference (ACC).

[22]  Taeyoung Lee,et al.  Constrained geometric attitude control on SO(3) , 2017 .

[23]  Savvas G. Loizou,et al.  The Navigation Transformation , 2017, IEEE Transactions on Robotics.

[24]  Charalampos P. Bechlioulis,et al.  Prescribed Time Scale Robot Navigation , 2018, IEEE Robotics and Automation Letters.

[25]  Dimos V. Dimarogonas,et al.  A Hybrid Controller for Obstacle Avoidance in an $n$-dimensional Euclidean Space , 2019, 2019 18th European Control Conference (ECC).