End-to-end capacities of a quantum communication network

In quantum mechanics, a fundamental law prevents quantum communications to simultaneously achieve high rates and long distances. This limitation is well known for point-to-point protocols, where two parties are directly connected by a quantum channel, but not yet fully understood in protocols with quantum repeaters. Here we solve this problem bounding the ultimate rates for transmitting quantum information, entanglement and secret keys via quantum repeaters. We derive single-letter upper bounds for the end-to-end capacities achievable by the most general (adaptive) protocols of quantum and private communication, from a single repeater chain to an arbitrarily complex quantum network, where systems may be routed through single or multiple paths. We analytically establish these capacities under fundamental noise models, including bosonic loss which is the most important for optical communications. In this way, our results provide the ultimate benchmarks for testing the optimal performance of repeater-assisted quantum communications.The aim of quantum communications is to transmit quantum information at high rate over long distances, something that can only be achieved by quantum repeaters and quantum networks. Here the author presents the ultimate end-to-end capacities of a quantum network, also showing the advantages of multipath network routing versus single repeater chains.

[1]  S. Braunstein,et al.  Physics: Unite to build a quantum Internet , 2016, Nature.

[2]  A. Furusawa,et al.  Teleportation of continuous quantum variables , 1998, Technical Digest. Summaries of Papers Presented at the International Quantum Electronics Conference. Conference Edition. 1998 Technical Digest Series, Vol.7 (IEEE Cat. No.98CH36236).

[3]  M. Pollack Letter to the Editor—The Maximum Capacity Through a Network , 1960 .

[4]  R. V. Meter Quantum Networking: Van Meter/Quantum Networking , 2014 .

[5]  M. Curty,et al.  Measurement-device-independent quantum key distribution. , 2011, Physical review letters.

[6]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[7]  Hoi-Kwong Lo,et al.  All-photonic quantum repeaters , 2013, Nature Communications.

[8]  Seth Lloyd,et al.  Reverse coherent information. , 2008, Physical review letters.

[9]  Koji Azuma,et al.  Aggregating quantum repeaters for the quantum internet , 2016, 1606.00135.

[10]  V. Vedral,et al.  Entanglement measures and purification procedures , 1997, quant-ph/9707035.

[11]  J. Eisert,et al.  Advances in quantum teleportation , 2015, Nature Photonics.

[12]  William J. Cook,et al.  Combinatorial optimization , 1997 .

[13]  J. F. Dynes,et al.  Overcoming the rate-distance barrier of quantum key distribution without using quantum repeaters , 2018 .

[14]  Leandros Tassiulas,et al.  Routing entanglement in the quantum internet , 2017, npj Quantum Information.

[15]  C. H. Bennett,et al.  Capacities of Quantum Erasure Channels , 1997, quant-ph/9701015.

[16]  S. Pirandola Capacities of repeater-assisted quantum communications , 2016, 1601.00966.

[17]  M. A. Aczel,et al.  THE MAXIMUM CAPACITY THROUGH A NETWORK , 2016 .

[18]  D. R. Fulkerson,et al.  Maximal Flow Through a Network , 1956 .

[19]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[20]  Masahito Hayashi,et al.  Secrecy and robustness for active attack in secure network coding , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[21]  Stefano Pirandola,et al.  Side-channel-free quantum key distribution. , 2011, Physical review letters.

[22]  Robert E. Tarjan,et al.  Fibonacci heaps and their uses in improved network optimization algorithms , 1984, JACM.

[23]  Hoi-Kwong Lo,et al.  Fundamental rate-loss trade-off for the quantum internet , 2016, Nature Communications.

[24]  Masahito Hayashi,et al.  Secure Quantum Network Code without Classical Communication , 2018, 2018 IEEE Information Theory Workshop (ITW).

[25]  Samuel L. Braunstein,et al.  Tight finite-resource bounds for private communication over Gaussian channels , 2018, 1808.00608.

[26]  John Watrous,et al.  The Theory of Quantum Information , 2018 .

[27]  Robert E. Tarjan,et al.  Improved Time Bounds for the Maximum Flow Problem Improved Time Bounds for the Maximum Flow Problem Improved Time Bounds for the Maximum Flow Problem , 2008 .

[28]  Abbas El Gamal,et al.  Network Information Theory , 2021, 2021 IEEE 3rd International Conference on Advanced Trends in Information Theory (ATIT).

[29]  J. F. Dynes,et al.  Overcoming the rate–distance limit of quantum key distribution without quantum repeaters , 2018, Nature.

[30]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[31]  Xiongfeng Ma,et al.  Phase-Matching Quantum Key Distribution , 2018, Physical Review X.

[32]  James F. Dynes,et al.  Quantum secured gigabit optical access networks , 2015, Scientific reports.

[33]  Alexander Semenovich Holevo,et al.  Quantum Systems, Channels, Information: A Mathematical Introduction , 2019 .

[34]  Stefano Pirandola,et al.  General bounds for sender-receiver capacities in multipoint quantum communications , 2016, 1603.07262.

[35]  T. E. Harris,et al.  Fundamentals of a Method for Evaluating Rail Net Capacities , 1955 .

[36]  D. Trotter,et al.  Metropolitan quantum key distribution with silicon photonics , 2017, 1708.00434.

[37]  Stefano Pirandola,et al.  High-rate measurement-device-independent quantum cryptography , 2013, Nature Photonics.

[38]  Seth Lloyd,et al.  Direct and reverse secret-key capacities of a quantum channel. , 2008, Physical review letters.

[39]  Kenneth Goodenough,et al.  Assessing the performance of quantum repeaters for all phase-insensitive Gaussian bosonic channels , 2015, 1511.08710.

[40]  Stefano Pirandola,et al.  Unite to build a quantum internet , 2016 .

[41]  Stefano Pirandola,et al.  Finite-resource teleportation stretching for continuous-variable systems , 2017, Scientific Reports.

[42]  Maksim E. Shirokov,et al.  On the Energy-Constrained Diamond Norm and Its Application in Quantum Information Theory , 2017, Probl. Inf. Transm..

[43]  Kenneth Goodenough,et al.  Converse bounds for quantum and private communication over Holevo–Werner channels , 2018, Journal of Physics A: Mathematical and Theoretical.

[44]  Samuel L. Braunstein,et al.  Teleportation simulation of bosonic Gaussian channels: strong and uniform convergence , 2017, The European Physical Journal D.

[45]  Stefano Pirandola,et al.  Simulation of non-Pauli channels , 2017 .

[46]  S. Braunstein,et al.  Quantum Information with Continuous Variables , 2004, quant-ph/0410100.

[47]  Masahito Hayashi,et al.  Quantum Network Coding , 2006, STACS.

[48]  Richard M. Karp,et al.  Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems , 1972, Combinatorial Optimization.

[49]  David Elkouss,et al.  Linear programs for entanglement and key distribution in the quantum internet , 2018, Communications Physics.

[50]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.

[51]  Peter Elias,et al.  A note on the maximum flow through a network , 1956, IRE Trans. Inf. Theory.

[52]  E. A. Dinic Algorithm for solution of a problem of maximal flow in a network with power estimation , 1970 .

[53]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[54]  James B. Orlin,et al.  Max flows in O(nm) time, or better , 2013, STOC '13.

[55]  M. Plenio,et al.  Quantifying Entanglement , 1997, quant-ph/9702027.

[56]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[57]  Robert E. Tarjan,et al.  A faster deterministic maximum flow algorithm , 1992, SODA '92.

[58]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[59]  Jianer Chen,et al.  A note on practical construction of maximum bandwidth paths , 2002, Inf. Process. Lett..

[60]  Deep Medhi,et al.  Network routing - algorithms, protocols, and architectures , 2007 .

[61]  M. R. Rao,et al.  Combinatorial Optimization , 1992, NATO ASI Series.

[62]  Stefano Pirandola,et al.  Fundamental limits to quantum channel discrimination , 2018, npj Quantum Information.

[63]  Michal Horodecki,et al.  General Paradigm for Distilling Classical Key From Quantum States , 2009, IEEE Transactions on Information Theory.

[64]  Stefano Pirandola,et al.  Conditional channel simulation , 2018, Annals of Physics.

[65]  C. D. Franco,et al.  Optimal path for a quantum teleportation protocol in entangled networks , 2010, 1008.1679.

[66]  Paul Slepian,et al.  Mathematical foundations of network analysis , 1968 .

[67]  L. Banchi,et al.  Fundamental limits of repeaterless quantum communications , 2015, Nature Communications.

[68]  J. Oppenheim,et al.  Secure key from bound entanglement. , 2003, Physical Review Letters.

[69]  Noga Alon,et al.  Generating Pseudo-Random Permutations and Maximum Flow Algorithms , 1990, Inf. Process. Lett..

[70]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[71]  Kurt Mehlhorn,et al.  Can A Maximum Flow be Computed on o(nm) Time? , 1990, ICALP.

[72]  Rodney Van Meter,et al.  Path selection for quantum repeater networks , 2012, ArXiv.

[73]  J. Kruskal On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .

[74]  Samuel L. Braunstein,et al.  Theory of channel simulation and bounds for private communication , 2017, Quantum Science and Technology.

[75]  V. Vedral The role of relative entropy in quantum information theory , 2001, quant-ph/0102094.

[76]  Koji Azuma,et al.  Versatile relative entropy bounds for quantum networks , 2017, 1707.05543.