A weak lensing mass reconstruction of the large‐scale filament feeding the massive galaxy cluster MACS J0717.5+3745

We report the first weak lensing detection of a large-scale filament funnelling matter on to the core of the massive galaxy cluster MACS J0717.5+3745. Our analysis is based on a mosaic of 18 multipassband images obtained with the Advanced Camera for Surveys aboard the Hubble Space Telescope, covering an area of ˜10 × 20 arcmin2. We use a weak lensing pipeline developed for the Cosmic Evolution Survey, modified for the analysis of galaxy clusters, to produce a weak lensing catalogue. A mass map is then computed by applying a weak gravitational lensing multiscale reconstruction technique designed to describe irregular mass distributions such as the one investigated here. We test the resulting mass map by comparing the mass distribution inferred for the cluster core with the one derived from strong lensing constraints and find excellent agreement. Our analysis detects the MACS J0717.5+3745 filament within the 3σ detection contour of the lensing mass reconstruction, and underlines the importance of filaments for theoretical and numerical models of the mass distribution in the cosmic web. We measure the filament's projected length as ˜4.5 h74-1 Mpc, and its mean density as (2.92 ± 0.66) × 108 h74 Ms kpc-2. Combined with the redshift distribution of galaxies obtained after an extensive spectroscopic follow-up in the area, we can rule out any projection effect resulting from the chance alignment on the sky of unrelated galaxy group-scale structures. Assuming plausible constraints concerning the structure's geometry based on its galaxy velocity field, we construct a three-dimensional (3D) model of the large-scale filament. Within this framework, we derive the 3D length of the filament to be 18 h74-1 Mpc. The filament's deprojected density in terms of the critical density of the Universe is measured as (206 ± 46) ρcrit, a value that lies at the very high end of the range predicted by numerical simulations. Finally, we study the distribution of stellar mass in the field of MACS J0717.5+3749 and, adopting a mean mass-to-light ratio of 0.73 ± 0.22 and assuming a Chabrier initial mass function, measure a stellar mass fraction along the filament of (0.9 ± 0.2) per cent, consistent with previous measurements in the vicinity of massive clusters.

[1]  S.Cole,et al.  The 2dF Galaxy Redshift Survey: spectra and redshifts , 2001, astro-ph/0106498.

[2]  J. Kneib,et al.  Multiscale cluster lens mass mapping - I. Strong lensing modelling , 2009, 0901.3792.

[3]  Discovery of a Large-Scale Filament Connected to the Massive Galaxy Cluster MACS J0717.5+3745 at z = 0.55* ** ** * , 2004, astro-ph/0406049.

[4]  Weak Lensing Measurements: A Revisited Method and Application toHubble Space Telescope Images , 1999, astro-ph/9905090.

[5]  A. Gupta,et al.  EVIDENCE FOR THE MISSING BARYONS IN THE ANGULAR CORRELATION OF THE DIFFUSE X-RAY BACKGROUND , 2008, 0812.2219.

[6]  S. Shandarin,et al.  Universality of the Network and Bubble Topology in Cosmological Gravitational Simulations , 1995, astro-ph/9509052.

[7]  Tristan L. Smith,et al.  NEW CONSTRAINTS ON THE EVOLUTION OF THE STELLAR-TO-DARK MATTER CONNECTION: A COMBINED ANALYSIS OF GALAXY–GALAXY LENSING, CLUSTERING, AND STELLAR MASS FUNCTIONS FROM z = 0.2 to z = 1 , 2011, 1104.0928.

[8]  Jeremiah P. Ostriker,et al.  Cosmic Chemical Evolution , 1999, astro-ph/9903207.

[9]  Y. Mellier,et al.  Mass and light in the supercluster of galaxies MS0302+17 , 2004, astro-ph/0401403.

[10]  Alexie Leauthaud,et al.  Pixel-based correction for Charge Transfer Inefficiency in the Hubble Space Telescope Advanced Camera for Surveys , 2009, 0909.0507.

[11]  J. Kollmeier,et al.  DISCOVERY OF A LARGE-SCALE GALAXY FILAMENT NEAR A CANDIDATE INTERGALACTIC X-RAY ABSORPTION SYSTEM , 2010, 1008.5148.

[12]  M. Bremer,et al.  The discovery of two distant, massive clusters of galaxies in the ROSAT All-Sky Survey , 2003 .

[13]  A. Taylor,et al.  Probing the Distribution of Dark Matter in the A901/902 Supercluster with Weak Lensing , 2001, astro-ph/0111288.

[14]  A. Finoguenov,et al.  Detection of hot gas in the filament connecting the clusters of galaxies Abell 222 and Abell 223 , 2008, 0803.2525.

[15]  Norbert Werner,et al.  A filament of dark matter between two clusters of galaxies , 2012, Nature.

[16]  Intercluster filaments in a ΛCDM Universe , 2004, astro-ph/0406665.

[17]  I. McCarthy,et al.  Probing the cosmic web: Intercluster filament detection using gravitational lensing , 2009, 0910.2417.

[18]  N. Kaiser,et al.  Mapping the dark matter with weak gravitational lensing , 1993 .

[19]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[20]  AN X-RAY/OPTICAL STUDY OF THE COMPLEX DYNAMICS OF THE CORE OF THE MASSIVE INTERMEDIATE-REDSHIFT CLUSTER MACSJ0717.5+3745 , 2009, 0901.4783.

[21]  MIT,et al.  Confirming the Detection of an Intergalactic X-Ray Absorber toward PKS 2155–304 , 2007, 0708.1800.

[22]  J. Kneib,et al.  A Bayesian approach to strong lensing modelling of galaxy clusters , 2007, 0706.0048.

[23]  L. Moscardini,et al.  Measuring and modelling the redshift evolution of clustering: the Hubble Deep Field North , 1999, astro-ph/9902290.

[24]  B. Garilli,et al.  Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey , 2006, astro-ph/0603217.

[25]  M. Oguri,et al.  Detailed cluster lensing profiles at large radii and the impact on cluster weak lensing studies , 2011, 1101.0650.

[26]  J. Huchra,et al.  Groups of galaxies. I. Nearby groups , 1982 .

[27]  H. Ebeling,et al.  The Spatial Distribution of Galaxies of Different Spectral Types in the Massive Intermediate-Redshift Cluster MACS J0717.5+3745 , 2008, 0805.2238.

[28]  C. Carollo,et al.  The evolution of dark matter halo properties in clusters, filaments, sheets and voids , 2007, 0704.2595.

[30]  Filamentary galaxy clustering: A mapping algorithm , 1983 .

[31]  Max Tegmark,et al.  Combined reconstruction of weak and strong lensing data with wslap , 2005, astro-ph/0509103.

[32]  A. Kassiola,et al.  Elliptic Mass Distributions versus Elliptic Potentials in Gravitational Lenses , 1993 .

[33]  R. Ellis,et al.  The Shear TEsting Programme 2: Factors affecting high precision weak lensing analyses , 2006, astro-ph/0608643.

[34]  D. Kelson,et al.  The Detailed Fundamental Plane of Two High-Redshift Clusters: MS 2053–04 at z = 0.58 and MS 1054–03 at z = 0.83 , 2003, astro-ph/0312236.

[35]  F. Paerels,et al.  The O VII X-Ray Forest toward Markarian 421: Consistency between XMM-Newton and Chandra , 2006, astro-ph/0604519.

[36]  M. Strauss,et al.  Crawling the cosmic network: identifying and quantifying filamentary structure , 2010, 1003.3237.

[37]  B. Garilli,et al.  The SWIRE-VVDS-CFHTLS surveys: stellar mass assembly over the last 10 Gyr. Evidence for a major build up of the red sequence between z = 2 and z = 1 , 2007, 0705.2438.

[38]  On the evolutionary status of early-type galaxies in clusters at z 0.2 - I. The Fundamental Plane† , 2005, astro-ph/0501379.

[39]  Yannick Mellier,et al.  The Stability of the Point-Spread Function of the Advanced Camera for Surveys on the Hubble Space Telescope and Implications for Weak Gravitational Lensing* , 2007 .

[40]  Substructure and the halo model of large-scale structure , 2002, astro-ph/0208353.

[41]  Y. Mellier,et al.  The dark matter environment of the Abell 901/902 supercluster: a weak lensing analysis of the HST STAGES survey , 2008, 0801.1156.

[42]  Weak lensing study of dark matter filaments and application to the binary cluster A 222 and A 223 , 2004, astro-ph/0406541.

[43]  H. Hoekstra,et al.  The Shear Testing Programme – I. Weak lensing analysis of simulated ground-based observations , 2005, astro-ph/0506112.

[44]  M. Meneghetti,et al.  Comparison of an X-ray-selected sample of massive lensing clusters with the MareNostrum Universe ΛCDM simulation , 2011, 1103.0044.

[45]  J. Huchra,et al.  Mapping the Universe , 1989, Science.

[46]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[47]  C. Ray Smith,et al.  Maximum Entropy and Bayesian Methods , 1992 .

[48]  T. Ponman,et al.  Temperature and abundance profiles of hot gas in galaxy groups – I. Results and statistical analysis , 2007, 0707.0717.

[49]  H. Ebeling,et al.  Probing the large-scale structure around the most distant galaxy clusters from the massive cluster survey , 2008, 0806.4019.

[50]  Rien van de Weygaert,et al.  Spin alignment of dark matter halos in filaments and walls , 2006 .

[51]  S. Arribas,et al.  The 2002 HST Calibration Workshop, Hubble after the installation of the ACS and the NICMOS cooling system : proceedings of a workshop held at the Space Telescope Science Institute, Baltimore, Maryland, October 17 and 18, 2002 , 2002 .

[52]  O. Möller,et al.  A comparison of the strong lensing properties of the Sérsic and the Navarro, Frenk and White profiles , 2007, 0706.3260.

[53]  D. Thompson,et al.  COSMOS PHOTOMETRIC REDSHIFTS WITH 30-BANDS FOR 2-deg2 , 2008, 0809.2101.

[54]  T. Schrabback,et al.  The impact of a major cluster merger on galaxy evolution in MACS J0025.4−1225 , 2010, 1003.2631.

[55]  H. Payne,et al.  Astronomical Data Analysis Software and Systems X , 2001 .

[56]  N. Metcalfe,et al.  A New Era in Cosmology , 2002 .

[57]  J. Bond,et al.  How filaments of galaxies are woven into the cosmic web , 1995, Nature.

[58]  S. White,et al.  Linking cluster formation to large-scale structure , 1997, astro-ph/9711040.

[59]  Y. Mellier,et al.  A WEAK LENSING STUDY OF X-RAY GROUPS IN THE COSMOS SURVEY: FORM AND EVOLUTION OF THE MASS–LUMINOSITY RELATION , 2009, 0910.5219.

[60]  A. Cuesta,et al.  The virialized mass of dark matter haloes , 2007, 0710.5520.

[61]  S. Colombi,et al.  Skeleton as a probe of the cosmic web : the two-dimensional case , 2003, astro-ph/0307003.

[62]  S. Okamura,et al.  Subaru Prime Focus Camera — Suprime-Cam , 2002, astro-ph/0211006.

[63]  P. Hudelot,et al.  Combining Strong and Weak Gravitational Lensing in Abell 1689 , 2006, astro-ph/0612165.

[64]  M. Drinkwater,et al.  Intercluster filaments of galaxies programme: Pilot study survey and results , 2003, astro-ph/0309216.

[65]  Massimo Stiavelli,et al.  WFPC2 Observations of the Hubble Deep Field South , 2000, astro-ph/0010245.

[66]  A. Edge,et al.  MACS: A Quest for the Most Massive Galaxy Clusters in the Universe , 2000, astro-ph/0009101.

[67]  S. Mathur,et al.  Chandra and Far Ultraviolet Spectroscopic Explorer Observations of z ~ 0 Warm-Hot Gas toward PKS 2155–304 , 2006, astro-ph/0611583.

[68]  Chien Y. Peng,et al.  GEMS: Galaxy Evolution from Morphologies and SEDs , 2004 .

[69]  D. Lambas,et al.  Large-scale anisotropies on halo infall , 2010, 1011.2494.

[70]  A complete sample of 12 very x-ray luminous galaxy clusters at z >0.5 , 2007, astro-ph/0703394.

[71]  I. Smail,et al.  Hubble Space Telescope Observations of the Lensing Cluster Abell 2218 , 1995, astro-ph/9511015.

[72]  Cea,et al.  Weak Gravitational Lensing with COSMOS: Galaxy Selection and Shape Measurements , 2007, astro-ph/0702359.

[73]  S. Faber,et al.  Velocity dispersions and mass-to-light ratios for elliptical galaxies. , 1976 .