Corneal shaping and ablation of transparent media by femtosecond pulses in deep ultraviolet range

[1]  G. Mourou,et al.  Corneal refractive surgery with femtosecond lasers , 1999 .

[2]  A. Piskarskas,et al.  Nonlinear pulse compression in the ultraviolet , 1997 .

[3]  H. Tchah,et al.  Comparison of the IntraLase femtosecond laser and mechanical microkeratome for laser in situ keratomileusis. , 2006, American journal of ophthalmology.

[4]  L. G. Pallikaris,et al.  Laser in situ keratomileusis , 1990, Lasers in surgery and medicine.

[5]  R. Krueger,et al.  First clinical results with the femtosecond neodynium-glass laser in refractive surgery. , 2003, Journal of refractive surgery.

[6]  Donald R Sanders,et al.  Treatment of irregular astigmatism with a 213 nm solid‐state, diode‐pumped neodymium:YAG ablative laser , 2004, Journal of cataract and refractive surgery.

[7]  Jennifer Rodger,et al.  Histological changes and unscheduled DNA synthesis in the rabbit cornea following 213-nm, 193-nm, and 266-nm irradiation. , 2007, Journal of refractive surgery.

[8]  Holger Lubatschowski,et al.  Femtosecond Technology for Technical and Medical Applications , 2010 .

[9]  M. Netto,et al.  Wavefront analysis comparison of LASIK outcomes with the femtosecond laser and mechanical microkeratomes. , 2007, Journal of refractive surgery.

[10]  Markus Sticker,et al.  First efficacy and safety study of femtosecond lenticule extraction for the correction of myopia: Six‐month results , 2008, Journal of cataract and refractive surgery.

[11]  J. Krauss,et al.  Laser interactions with the cornea. , 1986, Survey of ophthalmology.

[12]  I. Benzie,et al.  UV-Mediated DNA Strand Breaks in Corneal Epithelial Cells Assessed Using the Comet Assay Procedure¶ , 2005, Photochemistry and photobiology.

[13]  T. Juhász,et al.  Study of corneal ablation with picosecond laser pulses at 211 nm and 263 nm , 1996, Lasers in surgery and medicine.

[14]  S. Alisauskas,et al.  Scalable Yb-MOPA-driven carrier-envelope phase-stable few-cycle parametric amplifier at 1.5 microm. , 2009, Optics letters.

[15]  Ward Small,et al.  Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: relative role of linear and nonlinear absorption , 1996 .

[16]  Jeffrey P. Koplow,et al.  Efficient second, third, fourth, and fifth harmonic generation of a Yb-doped fiber amplifIer. , 2002 .

[17]  R H Eikelboom,et al.  Absorption of 193- and 213-nm laser wavelengths in sodium chloride solution and balanced salt solution. , 2001, Archives of ophthalmology.

[18]  Nikolaos S. Tsiklis,et al.  One‐year results of photorefractive keratectomy and laser in situ keratomileusis for myopia using a 213 nm wavelength solid‐state laser , 2007, Journal of cataract and refractive surgery.

[19]  Anna M Roszkowska,et al.  One-year clinical results of photorefractive keratectomy with a solid-state laser for refractive surgery. , 2006, Journal of refractive surgery.

[20]  Georg Korn,et al.  Experimental and clinical investigation of efficiency and ablation profiles of new solid‐state deep‐ultraviolet laser for vision correction , 2004, Journal of cataract and refractive surgery.

[21]  D. Durrie,et al.  Femtosecond laser versus mechanical keratome flaps in wavefront‐guided laser in situ keratomileusis: Prospective contralateral eye study , 2005, Journal of cataract and refractive surgery.

[22]  P P van Saarloos,et al.  Investigation of corneal ablation efficiency using ultraviolet 213-nm solid state laser pulses. , 1999, Investigative ophthalmology & visual science.