A XFEM Lagrange Multiplier Technique for Stefan Problems
暂无分享,去创建一个
Mario Fafard | Dave Martin | Hicham Chaouki | Jean-Loup Robert | Donald Ziegler | Dave Martin | M. Fafard | D. Ziegler | J. Robert | H. Chaouki
[1] I. Babuska. Error-bounds for finite element method , 1971 .
[2] W. Wall,et al. An eXtended Finite Element Method/Lagrange multiplier based approach for fluid-structure interaction , 2008 .
[3] A. Karma,et al. Regular Article: Modeling Melt Convection in Phase-Field Simulations of Solidification , 1999 .
[4] Ted Belytschko,et al. A finite element method for crack growth without remeshing , 1999 .
[5] Wolfgang A. Wall,et al. An XFEM Based Fixed-Grid Approach for 3D Fluid-Structure Interaction , 2011 .
[6] T. Fries. A corrected XFEM approximation without problems in blending elements , 2008 .
[7] John E. Dolbow,et al. Solving thermal and phase change problems with the eXtended finite element method , 2002 .
[8] S. Osher,et al. Level set methods: an overview and some recent results , 2001 .
[9] Brian T. Helenbrook. High-Order Adaptive Arbitrary-Lagrangian-Eulerian (ALE) Calculations of Solidification , 2013 .
[10] K. A. Rathjen,et al. Heat Conduction With Melting or Freezing in a Corner , 1971 .
[11] Ted Belytschko,et al. Arbitrary discontinuities in finite elements , 2001 .
[12] Tomoaki Utsunomiya,et al. Reformulation of XFEM based on PUFEM for solving problem caused by blending elements , 2009 .
[13] Nathan Ida,et al. Introduction to the Finite Element Method , 1997 .
[14] Ramon Codina,et al. A symmetric method for weakly imposing Dirichlet boundary conditions in embedded finite element meshes , 2012 .
[15] I. Babuska,et al. The partition of unity finite element method: Basic theory and applications , 1996 .
[16] Nicolas Moës,et al. A stable Lagrange multiplier space for stiff interface conditions within the extended finite element method , 2009 .
[17] S. Osher,et al. Algorithms Based on Hamilton-Jacobi Formulations , 1988 .
[18] B. Nedjar,et al. An enthalpy-based finite element method for nonlinear heat problems involving phase change , 2002 .
[19] I. Babuska,et al. The Partition of Unity Method , 1997 .
[20] Baskar Ganapathysubramanian,et al. Modelling dendritic solidification with melt convection using the extended finite element method , 2006, J. Comput. Phys..
[21] Thomas-Peter Fries,et al. A localized mixed‐hybrid method for imposing interfacial constraints in the extended finite element method (XFEM) , 2009 .
[22] Wolfgang A. Wall,et al. An embedded Dirichlet formulation for 3D continua , 2010 .
[23] Ted Belytschko,et al. Discontinuous enrichment in finite elements with a partition of unity method , 2000 .
[24] T. Belytschko,et al. An Extended Finite Element Method for Two-Phase Fluids , 2003 .
[25] Hywel Rhys Thomas,et al. Minimum time-step size for diffusion problem in FEM analysis , 1997 .
[26] Jean-François Remacle,et al. Imposing Dirichlet boundary conditions in the eXtended Finite Element Method , 2011 .
[27] T. Belytschko,et al. A review of extended/generalized finite element methods for material modeling , 2009 .
[28] T. Hughes,et al. The Galerkin/least-squares method for advective-diffusive equations , 1988 .
[29] T. Fries,et al. On time integration in the XFEM , 2009 .
[30] I. Babuska. The finite element method with Lagrangian multipliers , 1973 .
[31] T. Belytschko,et al. The extended finite element method (XFEM) for solidification problems , 2002 .
[32] M. Maeda,et al. [Heat conduction]. , 1972, Kango kyoshitsu. [Nursing classroom].
[33] John E. Dolbow,et al. On strategies for enforcing interfacial constraints and evaluating jump conditions with the extended finite element method , 2004 .