A XFEM Lagrange Multiplier Technique for Stefan Problems

The two dimensional phase change problem was solved using the extended finite element method with a Lagrange formulation to apply the interface boundary condition. The Lagrange multiplier space is identical to the solution space and does not require stabilization. The solid-liquid interface velocity is determined by the jump in heat flux across the i nterface. Two methods to calculate the jump are used and compared. The first is based on an averaged temperature gradient near the interface. The second uses the Lagrange multiplier values to evaluate the jump. The Lagrange multiplier based approach was shown to be more robust and precise.

[1]  I. Babuska Error-bounds for finite element method , 1971 .

[2]  W. Wall,et al.  An eXtended Finite Element Method/Lagrange multiplier based approach for fluid-structure interaction , 2008 .

[3]  A. Karma,et al.  Regular Article: Modeling Melt Convection in Phase-Field Simulations of Solidification , 1999 .

[4]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[5]  Wolfgang A. Wall,et al.  An XFEM Based Fixed-Grid Approach for 3D Fluid-Structure Interaction , 2011 .

[6]  T. Fries A corrected XFEM approximation without problems in blending elements , 2008 .

[7]  John E. Dolbow,et al.  Solving thermal and phase change problems with the eXtended finite element method , 2002 .

[8]  S. Osher,et al.  Level set methods: an overview and some recent results , 2001 .

[9]  Brian T. Helenbrook High-Order Adaptive Arbitrary-Lagrangian-Eulerian (ALE) Calculations of Solidification , 2013 .

[10]  K. A. Rathjen,et al.  Heat Conduction With Melting or Freezing in a Corner , 1971 .

[11]  Ted Belytschko,et al.  Arbitrary discontinuities in finite elements , 2001 .

[12]  Tomoaki Utsunomiya,et al.  Reformulation of XFEM based on PUFEM for solving problem caused by blending elements , 2009 .

[13]  Nathan Ida,et al.  Introduction to the Finite Element Method , 1997 .

[14]  Ramon Codina,et al.  A symmetric method for weakly imposing Dirichlet boundary conditions in embedded finite element meshes , 2012 .

[15]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[16]  Nicolas Moës,et al.  A stable Lagrange multiplier space for stiff interface conditions within the extended finite element method , 2009 .

[17]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .

[18]  B. Nedjar,et al.  An enthalpy-based finite element method for nonlinear heat problems involving phase change , 2002 .

[19]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[20]  Baskar Ganapathysubramanian,et al.  Modelling dendritic solidification with melt convection using the extended finite element method , 2006, J. Comput. Phys..

[21]  Thomas-Peter Fries,et al.  A localized mixed‐hybrid method for imposing interfacial constraints in the extended finite element method (XFEM) , 2009 .

[22]  Wolfgang A. Wall,et al.  An embedded Dirichlet formulation for 3D continua , 2010 .

[23]  Ted Belytschko,et al.  Discontinuous enrichment in finite elements with a partition of unity method , 2000 .

[24]  T. Belytschko,et al.  An Extended Finite Element Method for Two-Phase Fluids , 2003 .

[25]  Hywel Rhys Thomas,et al.  Minimum time-step size for diffusion problem in FEM analysis , 1997 .

[26]  Jean-François Remacle,et al.  Imposing Dirichlet boundary conditions in the eXtended Finite Element Method , 2011 .

[27]  T. Belytschko,et al.  A review of extended/generalized finite element methods for material modeling , 2009 .

[28]  T. Hughes,et al.  The Galerkin/least-squares method for advective-diffusive equations , 1988 .

[29]  T. Fries,et al.  On time integration in the XFEM , 2009 .

[30]  I. Babuska The finite element method with Lagrangian multipliers , 1973 .

[31]  T. Belytschko,et al.  The extended finite element method (XFEM) for solidification problems , 2002 .

[32]  M. Maeda,et al.  [Heat conduction]. , 1972, Kango kyoshitsu. [Nursing classroom].

[33]  John E. Dolbow,et al.  On strategies for enforcing interfacial constraints and evaluating jump conditions with the extended finite element method , 2004 .