Photoelectrocatalytic removal of dye and Cr(VI) pollutants with Ag2S and Bi2S3 co-sensitized TiO2 nanotube arrays under solar irradiation

[1]  Guihua Li,et al.  Influence of Ag-Au microstructure on the photoelectrocatalytic performance of TiO2 nanotube array photocatalysts. , 2016, Journal of colloid and interface science.

[2]  Z. Sha,et al.  Visible light induced photocatalysis on CdS quantum dots decorated TiO2 nanotube arrays , 2015 .

[3]  Huijun Zhao,et al.  Photocatalytic and photoelectrocatalytic degradation and mineralization of small biological compounds amino acids at TiO2 photoanodes , 2015 .

[4]  Zhongyi Jiang,et al.  In situ fabrication of Ag3PO4/TiO2 nanotube heterojunctions with enhanced visible-light photocatalytic activity. , 2015, Physical chemistry chemical physics : PCCP.

[5]  Cheng Sun,et al.  A novel ternary plasmonic photocatalyst: ultrathin g-C3N4 nanosheet hybrided by Ag/AgVO3 nanoribbons with enhanced visible-light photocatalytic performance , 2015 .

[6]  Qiang Zhang,et al.  Mophology-modulations of TiO2 nanostructures for enhanced photocatalytic performance , 2015 .

[7]  Ke-Qin Zhang,et al.  TiO2 nanotube arrays loaded with reduced graphene oxide films: facile hybridization and promising photocatalytic application , 2015 .

[8]  Di Zhang,et al.  A photochromic nano-system via self-recovery for stable photocatalytic hydrogen evolution by optimizing TiO2 surface energy , 2015 .

[9]  C. Guillard,et al.  Phenol photocatalytic degradation over anisotropic TiO2 nanomaterials: Kinetic study, adsorption isotherms and formal mechanisms , 2015 .

[10]  Bin Liu,et al.  Metal-cluster-decorated TiO2 nanotube arrays: a composite heterostructure toward versatile photocatalytic and photoelectrochemical applications. , 2015, Small.

[11]  Z. Fang,et al.  Applications of TiO2 nanotube arrays in environmental and energy fields: A review , 2015 .

[12]  T. Yonezawa,et al.  Double-wall TiO2 nanotube arrays: enhanced photocatalytic activity and in situ TEM observations at high temperature. , 2014, ACS applied materials & interfaces.

[13]  Yucheng Wu,et al.  Uniformly dispersed CdS/CdSe quantum dots co-sensitized TiO2 nanotube arrays with high photocatalytic property under visible light , 2014 .

[14]  Ling Zhang,et al.  Bi2WO6 quantum dot-intercalated ultrathin montmorillonite nanostructure and its enhanced photocatalytic performance , 2014, Nano Research.

[15]  Fumin Li,et al.  Double-sided transparent electrodes of TiO2 nanotube arrays for highly efficient CdS quantum dot-sensitized photoelectrodes , 2014, Journal of Materials Science.

[16]  Claudio V. Di Leo,et al.  A new methodology for characterizing traction-separation relations for interfacial delamination of thermal barrier coatings , 2014 .

[17]  Yu-Cheng Chang ZnO nanopinecone arrays with enhanced photocatalytic performance in sunlight , 2014 .

[18]  Qingping Wu,et al.  A dopant-mediated recombination mechanism in Fe-doped TiO2 nanoparticles for the photocatalytic decomposition of nitric oxide , 2014 .

[19]  Yucheng Wu,et al.  Enhanced visible light photocatalytic activity of TiO2 nanotube arrays modified with CdSe nanoparticles by electrodeposition method , 2014 .

[20]  D. Sarkar,et al.  Detail study on ac-dc magnetic and dye absorption properties of Fe3O4 hollow spheres for biological and industrial application. , 2014, Journal of nanoscience and nanotechnology.

[21]  Chengbin Liu,et al.  Reduced graphene oxide and CdTe nanoparticles co-decorated TiO2 nanotube array as a visible light photocatalyst , 2014, Journal of Materials Science.

[22]  Juan M. Coronado,et al.  Photocatalytic materials: recent achievements and near future trends , 2014 .

[23]  W. Shen,et al.  High performance PbS quantum dot sensitized solar cells via electric field assisted in situ chemical deposition on modulated TiO2 nanotube arrays. , 2014, Nanoscale.

[24]  M. Qorbani,et al.  Optimal Ag2S nanoparticle incorporated TiO2 nanotube array for visible water splitting , 2014 .

[25]  Qingyun Cai,et al.  Label-free photoelectrochemical immunosensor based on CdTe/CdS co-sensitized TiO2 nanotube array structure for octachlorostyrene detection. , 2013, Biosensors & bioelectronics.

[26]  Haibin Yang,et al.  Simple synthesis method of Bi2S3/CdS quantum dots cosensitized TiO2 nanotubes array with enhanced photoelectrochemical and photocatalytic activity , 2013 .

[27]  Yong Zhao,et al.  Bi2S3-modified TiO2 nanotube arrays: easy fabrication of heterostructure and effective enhancement of photoelectrochemical property , 2013, Journal of Materials Science.

[28]  Y. Lai,et al.  CdSe/CdS quantum dots co-sensitized TiO2 nanotube array photoelectrode for highly efficient solar cells , 2012 .

[29]  Qingyao Wang,et al.  Synthesis of N-doped TiO2 mesosponge by solvothermal transformation of anodic TiO2 nanotubes and enhanced photoelectrochemical performance , 2012 .

[30]  S. Cho,et al.  Improved conversion efficiency of CdS quantum dot-sensitized TiO2 nanotube-arrays using CuInS2 as a co-sensitizer and an energy barrier layer , 2011 .

[31]  C. Grimes,et al.  Fabrication of PbS nanoparticle-sensitized TiO₂ nanotube arrays and their photoelectrochemical properties. , 2011, ACS applied materials & interfaces.

[32]  M. Trojanowicz,et al.  Ion chromatographic speciation of chromium with diphenylcarbazide-based spectrophotometric detection , 1996 .

[33]  Yunhee Kim Environmental, Sustainable Behaviors and Innovation of Firms During the Financial Crisis , 2015 .

[34]  Rencheng Jin,et al.  CdS–CdSe (CdTe) core–shell quantum dots sensitized TiO2 nanotube array solar cells , 2015 .

[35]  Mira Park,et al.  Preparation and photocatalytic activity of fly ash incorporated TiO2 nanofibers for effective removal of organic pollutants , 2015 .

[36]  D. Ding,et al.  Efficient improvement of photoelectrochemical activity for multiple semiconductor (CdS/PbS/ZnS) co-sensitized TiO2 photoelectrodes by hydrogen treatment , 2015 .

[37]  Aloni Clinton,et al.  An Evaluation of Community Relations Impact in Managing Environmental Related Crisis in the Niger Delta , 2014 .

[38]  K. Rigby,et al.  Mapping Common Ground : Ecocriticism, Environmental History, and the Environmental Humanities , 2014 .