Puzzling asteroid 21 Lutetia: our knowledge prior to the Rosetta fly-by

A wide observational campaign was carried out in 2004-2009 aimed to complete the ground-based investigation of Lutetia prior to the Rosetta fly-by in July 2010. We have obtained BVRI photometric and V-band polarimetric measurements over a wide range of phase angles, and visible and infrared spectra in the 0.4-2.4 micron range. We analyzed them together with previously published data to retrieve information on Lutetia's surface properties. Values of lightcurve amplitudes, absolute magnitude, opposition effect, phase coefficient and BVRI colors of Lutetia surface seen at near pole-on aspect have been determined. We defined more precisely parameters of polarization phase curve and showed their distinct deviation from any other moderate-albedo asteroid. An indication of possible variations both in polarization and spectral data across the asteroid surface was found. To explain features found by different techniques we propose that (i) Lutetia has a non-convex shape, probably due to the presence of a large crater, and heterogeneous surface properties probably related to surface morphology; (ii) at least part of the surface is covered by a fine-grained regolith with particle size less than 20 microns; (iii) the closest meteorite analogues of Lutetia's surface composition are particular types of carbonaceous chondrites or Lutetia has specific surface composition not representative among studied meteorites.

[1]  M. Busch,et al.  No satellites detected around 21 Lutetia , 2009 .

[2]  M. Fulchignoni,et al.  Plausible parent bodies for enstatite chondrites and mesosiderites: Implications for Lutetia's fly-by , 2009 .

[3]  D. Britt,et al.  Asteroid Masses V1.0 , 2009 .

[4]  Richard P. Binzel,et al.  An extension of the Bus asteroid taxonomy into the near-infrared , 2009 .

[5]  S. Marchi,et al.  New visible spectra and mineralogical assessment of (21) Lutetia, a target of the Rosetta mission , 2009 .

[6]  J. Masiero,et al.  Polarization of Asteroid (387) Aquitania: The newest member of a class of large inversion angle asteroids , 2008, 0810.2308.

[7]  N. M. Shakhovskoy,et al.  Polarimetry of main belt asteroids: Wavelength dependence , 2009 .

[8]  K. Glassmeier,et al.  Rosetta-ESA's Mission to the Origin of the Solar System , 2009 .

[9]  S. Vasilyev,et al.  Asteroid Polarimetric Database V6.0 , 2014 .

[10]  M. Barucci,et al.  Visible and near infrared spectroscopic investigation of E-type asteroids, including 2867 Steins, a target of the Rosetta mission , 2008 .

[11]  Lance A. M. Benner,et al.  A radar survey of M- and X-class asteroids , 2008 .

[12]  A. Cellino,et al.  New cases of unusual polarimetric behavior in asteroids , 2008 .

[13]  Alan Fitzsimmons,et al.  Surface properties of Rosetta's targets (21) Lutetia and (2867) Steins from ESO observations , 2008 .

[14]  M. Fulchignoni,et al.  Asteroids 2867 Steins and 21 Lutetia: surface composition from far infrared observations with the Spitzer space telescope , 2008 .

[15]  V. Busarev,et al.  Evidence of the complex structure of asteroid 21 Lutetia , 2007 .

[16]  A. Kryszczyńska,et al.  Near infra-red spectroscopy of the asteroid 21 Lutetia - II. Rotationally resolved spectroscopy of the surface , 2007 .

[17]  R. Gil-Hutton Polarimetry of M-type asteroids , 2007 .

[18]  E. F. Tedesco,et al.  Asteroid albedos deduced from stellar occultations , 2006 .

[19]  Barucci,et al.  Near infra-red spectroscopy of the asteroid 21 Lutetia - I. New results of long-term campaign , 2006 .

[20]  M. Mishchenko,et al.  Weak localization of electromagnetic waves and opposition phenomena exhibited by high-albedo atmosphereless solar system objects. , 2006, Applied optics.

[21]  E. Giro,et al.  Polarimetric survey of asteroids with the Asiago telescope , 2006, astro-ph/0604614.

[22]  Joseph D. Adams,et al.  The size and albedo of Rosetta fly-by target 21 Lutetia from new IRTF measurements and thermal modeling , 2006 .

[23]  Karri Muinonen,et al.  The strange polarimetric behavior of Asteroid (234) Barbara , 2006 .

[24]  E. Zubko,et al.  Discrete dipole approximation simulations of scattering by particles with hierarchical structure. , 2005, Applied optics.

[25]  V. V. Prokof'eva,et al.  The Surface Structure of the M-Type Asteroid 21 Lutetia: Spectral and Frequency Analysis , 2005 .

[26]  Elisabetta Dotto,et al.  Asteroid target selection for the new Rosetta mission baseline: 21 Lutetia and 2867 Steins , 2005 .

[27]  V. V. Prokof'eva,et al.  CHARACTERIZING 21 LUTETIA WITH ITS REFLECTANCE SPECTRA , 2004 .

[28]  C. Barbieri,et al.  Visible spectral properties of asteroid 21 Lutetia, target of Rosetta Mission , 2004 .

[29]  Clark R. Chapman,et al.  SPACE WEATHERING OF ASTEROID SURFACES , 2004 .

[30]  M. Fulchignoni,et al.  Near-IR spectroscopy of asteroids 21 Lutetia, 89 Julia, 140 Siwa, 2181 Fogelin and 5480 (1989YK8), potential targets for the Rosetta mission; remote observations campaign on IRTF , 2003, astro-ph/0312638.

[31]  Mikko Kaasalainen,et al.  Shapes and rotational properties of thirty asteroids from photometric data , 2003 .

[32]  S. Kaasalainen,et al.  Asteroid photometric and polarimetric phase curves: empirical interpretation , 2003 .

[33]  J. Piironen,et al.  The Opposition Effect and Negative Polarization of Structural Analogs for Planetary Regoliths , 2002 .

[34]  G. Neukum,et al.  The Near-Earth Objects Follow-up Program. IV. CCD Photometry in 1996-1999 , 2002 .

[35]  Stephan D. Price,et al.  The Supplemental IRAS Minor Planet Survey , 2002 .

[36]  I. Belskaya,et al.  Opposition Effect of Asteroids , 2000 .

[37]  Andrew Scott Rivkin,et al.  The Nature of M-Class Asteroids from 3-μm Observations☆ , 2000 .

[38]  R. G. Hutton,et al.  Polarimetric Observations of Small Asteroids: Preliminary Results , 1999 .

[39]  I. Shapiro,et al.  Mainbelt Asteroids: Results of Arecibo and Goldstone Radar Observations of 37 Objects during 1980-1995 , 1998 .

[40]  C. Lagerkvist,et al.  Physical properties of M class asteroids , 1996 .

[41]  Alberto Cellino,et al.  Asteroid Families: Search of a 12,487-Asteroid Sample Using Two Different Clustering Techniques , 1995 .

[42]  N. Mcbride,et al.  Colour variations of asteroid 243 Ida , 1994 .

[43]  I. Belskaya,et al.  On the surface composition of the M-type asteroids , 1989 .

[44]  Barry M. Lasker,et al.  The Guide Star Photometric Catalog. I. , 1988 .

[45]  A. Dollfus,et al.  Planetary surface texture and albedo from parameter plots of optical polarization data , 1986 .

[46]  F. Witteborn,et al.  Detection of silicate emission features in the 8- to 13-μm spectra of main belt asteroids , 1983 .

[47]  Arlo U. Landolt,et al.  UBVRI PHOTOMETRIC STANDARD STARS AROUND THE CELESTIAL EQUATOR: UPDATES AND ADDITIONS , 2009, 0904.0638.

[48]  C. Chapman,et al.  Spectroscopic evidence for undifferentiated S-type asteroids , 1982 .

[49]  Audouin Dollfus,et al.  The nature of the M-type asteroids from optical polarimetry , 1979 .

[50]  D. Morrison,et al.  Taxonomy of asteroids , 1978 .

[51]  J. Gradie,et al.  Minor planets and related objects. XX - Polarimetric evidence for the albedos and compositions of 94 asteroids , 1976 .

[52]  Michael J. Gaffey,et al.  Spectral reflectance characteristics of the meteorite classes , 1976 .

[53]  David Morrison,et al.  Surface properties of asteroids - A synthesis of polarimetry, radiometry, and spectrophotometry , 1975 .

[54]  Torrence V. Johnson,et al.  Optical properties of carbonaceous chondrites and their relationship to asteroids , 1973 .