Sampling scheme for neuromorphic simulation of entangled quantum systems

Due to the complexity of the space of quantum many-body states the computation of expectation values by statistical sampling is, in general, a hard task. Neural network representations of such quantum states which can be physically implemented by neuromorphic hardware could enable efficient sampling. A scheme is proposed which leverages this capability to speed up sampling from so-called neural quantum states encoded by a restricted Boltzmann machine. Due to the complex network parameters a direct hardware implementation is not feasible. We overcome this problem by considering a phase reweighting scheme for sampling expectation values of observables. Applying our method to a set of paradigmatic entangled quantum states we find that, in general, the phase-reweighted sampling is subject to a form of sign problem, which renders the sampling computationally costly. The use of neuromorphic chips could allow reducing computation times and thereby extend the range of tractable system sizes.

[1]  Jad C. Halimeh,et al.  Universal equilibrium scaling functions at short times after a quench. , 2017, Physical review. E.

[2]  I. Kivlichan On the complexity of stoquastic Hamiltonians , 2015 .

[3]  Lu-Ming Duan,et al.  Efficient representation of quantum many-body states with deep neural networks , 2017, Nature Communications.

[4]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[5]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[6]  H. Bechmann-Pasquinucci,et al.  Bell inequality, Bell states and maximally entangled states for n qubits , 1998, quant-ph/9804045.

[7]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[8]  P. Calabrese,et al.  Quantum quenches in the transverse field Ising chain: II. Stationary state properties , 2012, 1205.2211.

[9]  U. Schollwoeck The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.

[10]  T. Gasenzer,et al.  Quenches near Ising quantum criticality as a challenge for artificial neural networks , 2018, Physical Review B.

[11]  L. Duan,et al.  Efficient representation of topologically ordered states with restricted Boltzmann machines , 2018, Physical Review B.

[12]  White,et al.  Sign problem in the numerical simulation of many-electron systems. , 1990, Physical review. B, Condensed matter.

[13]  R. Feynman Simulating physics with computers , 1999 .

[14]  J. Chen,et al.  Equivalence of restricted Boltzmann machines and tensor network states , 2017, 1701.04831.

[15]  M. Lukin,et al.  Probing many-body dynamics on a 51-atom quantum simulator , 2017, Nature.

[16]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[17]  Vedran Dunjko,et al.  Neural network operations and Susuki–Trotter evolution of neural network states , 2018, International Journal of Quantum Information.

[18]  D. Deng,et al.  Quantum Entanglement in Neural Network States , 2017, 1701.04844.

[19]  J. Cirac,et al.  Neural-Network Quantum States, String-Bond States, and Chiral Topological States , 2017, 1710.04045.

[20]  P. Calabrese,et al.  Quantum quench in the transverse field Ising chain: I. Time evolution of order parameter correlators , 2011, Physical review letters.

[21]  Johannes Schemmel,et al.  Stochastic inference with spiking neurons in the high-conductance state , 2016, Physical review. E.

[22]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[23]  Paul Müller,et al.  Accelerated Physical Emulation of Bayesian Inference in Spiking Neural Networks , 2018, Front. Neurosci..

[24]  J. Schachenmayer,et al.  Dynamics of correlations in two-dimensional quantum spin models with long-range interactions: a phase-space Monte-Carlo study , 2015, 1501.06593.

[25]  R. Caflisch Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.

[26]  A. Rey,et al.  Many-Body Quantum Spin Dynamics with Monte Carlo Trajectories on a Discrete Phase Space , 2014, 1408.4441.

[27]  Marek M. Rams,et al.  Quantum neural networks to simulate many-body quantum systems , 2018, Physical Review B.

[28]  Roger G. Melko,et al.  Learning Thermodynamics with Boltzmann Machines , 2016, ArXiv.

[29]  P. Pfeuty The one-dimensional Ising model with a transverse field , 1970 .

[30]  M. Lavagna Quantum Phase Transitions , 2001, cond-mat/0102119.

[31]  Mihai Alexandru Petrovici,et al.  Form Versus Function: Theory and Models for Neuronal Substrates , 2016 .

[32]  Raphael Kaubruegger,et al.  Chiral topological phases from artificial neural networks , 2017, 1710.04713.

[33]  A. Falcon Physics I.1 , 2018 .

[34]  Nobuyuki Yoshioka,et al.  Constructing neural stationary states for open quantum many-body systems , 2019, Physical Review B.

[35]  Fabio L. Traversa,et al.  Memcomputing: Leveraging memory and physics to compute efficiently , 2018, ArXiv.

[36]  S. R. Clark,et al.  Unifying neural-network quantum states and correlator product states via tensor networks , 2017, 1710.03545.

[37]  Andrew S. Darmawan,et al.  Restricted Boltzmann machine learning for solving strongly correlated quantum systems , 2017, 1709.06475.

[38]  Roger G. Melko,et al.  Reconstructing quantum states with generative models , 2018, Nature Machine Intelligence.

[39]  A. Polkovnikov Phase space representation of quantum dynamics , 2009, 0905.3384.

[40]  Alexandra Nagy,et al.  Variational Quantum Monte Carlo Method with a Neural-Network Ansatz for Open Quantum Systems. , 2019, Physical review letters.

[41]  R. Blatt,et al.  Quantum simulations with trapped ions , 2011, Nature Physics.

[42]  Giacomo Torlai,et al.  Latent Space Purification via Neural Density Operators. , 2018, Physical review letters.

[43]  N. Regnault,et al.  Variational Neural-Network Ansatz for Steady States in Open Quantum Systems. , 2019, Physical review letters.

[44]  Front , 2020, 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4).

[45]  Matthias Troyer,et al.  Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations , 2004, Physical review letters.

[46]  G. Vidal,et al.  Time-dependent density-matrix renormalization-group using adaptive effective Hilbert spaces , 2004 .

[47]  M. Kastner,et al.  Simulation of quantum spin dynamics by phase space sampling of Bogoliubov-Born-Green-Kirkwood-Yvon trajectories , 2015, 1510.03768.

[48]  Matthias Troyer,et al.  Solving the quantum many-body problem with artificial neural networks , 2016, Science.

[49]  Haiping Huang,et al.  Mechanisms of dimensionality reduction and decorrelation in deep neural networks , 2018, Physical Review E.

[50]  M. Horne,et al.  Experimental Consequences of Objective Local Theories , 1974 .

[51]  S. Sorella Generalized Lanczos algorithm for variational quantum Monte Carlo , 2000, cond-mat/0009149.

[52]  E. Lieb,et al.  Two Soluble Models of an Antiferromagnetic Chain , 1961 .

[53]  Johannes Schemmel,et al.  Demonstrating Advantages of Neuromorphic Computation: A Pilot Study , 2018, Front. Neurosci..

[54]  Yu-Cheng Lin,et al.  Finite-size scaling of the entanglement entropy of the quantum Ising chain with homogeneous, periodically modulated and random couplings , 2008, 0803.3610.

[55]  Guifré Vidal Efficient simulation of one-dimensional quantum many-body systems. , 2004, Physical review letters.

[56]  Ivan Oseledets,et al.  Unifying time evolution and optimization with matrix product states , 2014, 1408.5056.

[57]  Michael J. Hartmann,et al.  Neural-Network Approach to Dissipative Quantum Many-Body Dynamics. , 2019, Physical review letters.

[58]  Juan Carrasquilla,et al.  Machine learning quantum phases of matter beyond the fermion sign problem , 2016, Scientific Reports.

[59]  J. Dalibard,et al.  Quantum simulations with ultracold quantum gases , 2012, Nature Physics.

[60]  Geoffrey E. Hinton A Practical Guide to Training Restricted Boltzmann Machines , 2012, Neural Networks: Tricks of the Trade.

[61]  A. Dutta,et al.  Quenches and dynamical phase transitions in a non-integrable quantum Ising model , 2015, 1506.00477.

[62]  S. Sachdev Quantum Phase Transitions: A first course , 1999 .

[63]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[64]  D. Rocca,et al.  Weak binding between two aromatic rings: feeling the van der Waals attraction by quantum Monte Carlo methods. , 2007, The Journal of chemical physics.

[65]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[66]  Immanuel Bloch,et al.  Emergence of coherence and the dynamics of quantum phase transitions , 2014, Proceedings of the National Academy of Sciences.

[67]  W. Marsden I and J , 2012 .

[68]  Matthias Troyer,et al.  Neural-network quantum state tomography , 2018 .

[69]  Peiyuan Teng Machine-learning quantum mechanics: Solving quantum mechanics problems using radial basis function networks , 2017, Physical Review E.

[70]  B. S. Cirel'son Quantum generalizations of Bell's inequality , 1980 .

[71]  H. Nishimori,et al.  Reweighting method for quantum Monte Carlo simulations with the negative-sign problem , 1992 .

[72]  Zoubin Ghahramani,et al.  Proceedings of the 24th international conference on Machine learning , 2007, ICML 2007.

[73]  J. Bell On the Problem of Hidden Variables in Quantum Mechanics , 1966 .

[74]  J. Bell,et al.  Speakable and Unspeakable in Quantum Mechanics: Preface to the first edition , 2004 .

[75]  H. Saito Solving the Bose–Hubbard Model with Machine Learning , 2017, 1707.09723.

[76]  Yusuke Nomura,et al.  Constructing exact representations of quantum many-body systems with deep neural networks , 2018, Nature Communications.

[77]  C. Monroe,et al.  Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator , 2017, Nature.