Finite Time Distance-based Rigid Formation Stabilization and Flocking

Abstract Most of the existing results on distributed distance-based rigid formation control establish asymptotic and often exponentially asymptotic convergence. To further improve the convergence rate, we explain in this paper how to modify existing controllers to obtain finite time stability. For point agents modeled by single integrators, the controllers proposed in this paper drive the whole formation to converge to a desired shape with finite settling time. For agents modeled by double integrators, the proposed controllers allow all agents to both achieve the same velocity and reach a desired shape in finite time. All controllers are totally distributed. Simulations are also provided to validate the proposed control.

[1]  Dennis S. Bernstein,et al.  Finite-Time Stability of Continuous Autonomous Systems , 2000, SIAM J. Control. Optim..

[2]  Florian Dörfler,et al.  Geometric Analysis of the Formation Problem for Autonomous Robots , 2010, IEEE Transactions on Automatic Control.

[3]  Mireille E. Broucke,et al.  Stabilisation of infinitesimally rigid formations of multi-robot networks , 2009, Int. J. Control.

[4]  Ziyang Meng,et al.  Decentralized finite-time sliding mode estimators and their applications in decentralized finite-time formation tracking , 2010, Syst. Control. Lett..

[5]  Brian D. O. Anderson,et al.  Control of a three-coleader formation in the plane , 2007, Syst. Control. Lett..

[6]  Brian D. O. Anderson,et al.  Maintaining a directed, triangular formation of mobile autonomous agents , 2011, Commun. Inf. Syst..

[7]  Hyo-Sung Ahn,et al.  Distance‐based undirected formations of single‐integrator and double‐integrator modeled agents in n‐dimensional space , 2014 .

[8]  B. Roth,et al.  The rigidity of graphs, II , 1979 .

[9]  Sanjay P. Bhat,et al.  Finite-Time Semistability and Consensus for Nonlinear Dynamical Networks , 2008, IEEE Transactions on Automatic Control.

[10]  S. Bhat,et al.  Continuous finite-time stabilization of the translational and rotational double integrators , 1998, IEEE Trans. Autom. Control..

[11]  Ziyang Meng,et al.  Robust cooperative tracking for multiple non-identical second-order nonlinear systems , 2013, Autom..

[12]  Karl H. Johansson,et al.  Further results on the stability of distance-based multi-robot formations , 2009, 2009 American Control Conference.

[13]  Brian D. O. Anderson,et al.  Combining distance-based formation shape control with formation translation , 2012 .

[14]  Brian D. O. Anderson,et al.  Control of Minimally Persistent Formations in the Plane , 2009, SIAM J. Control. Optim..

[15]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[16]  Hyo-Sung Ahn,et al.  A survey of multi-agent formation control : Position-, displacement-, and distance-based approaches , 2012 .

[17]  Xiangyu Wang,et al.  Finite-time consensus and collision avoidance control algorithms for multiple AUVs , 2013, Autom..

[18]  Claudio De Persis,et al.  Formation control with binary information , 2013, ArXiv.

[19]  Jie Huang,et al.  Finite-time control for robot manipulators , 2002, Syst. Control. Lett..

[20]  Bruce Hendrickson,et al.  Conditions for Unique Graph Realizations , 1992, SIAM J. Comput..

[21]  A. Morse,et al.  A Distributed Control Law for Acyclic Formations , 2011 .

[22]  Long Wang,et al.  Finite-time formation control for multi-agent systems , 2009, Autom..

[23]  Shaoshuai Mou,et al.  Robustness issues with undirected formations , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[24]  Ziyang Meng,et al.  Distributed finite-time attitude containment control for multiple rigid bodies , 2010, Autom..