A derivation of the luminosity function of the Kuiper belt from a broken power-law size distribution

Abstract We have derived a model of the Kuiper belt luminosity function exhibited by a broken power-law size distribution. This model allows direct comparison of the observed luminosity function to the underlying size distribution. We discuss the importance of the radial distribution model in determining the break diameter. We determine a best-fit break-diameter of the Kuiper belt size-distribution of 30 D b 90 km via a maximum-likelihood fit of our model to the observed luminosity function. We also confirm that the observed luminosity function for m ( R ) ∼ 21 – 28 is consistent with a broken power-law size distribution, and exhibits a break at m ( R ) = 26.0 −1.8 +0.7 .

[1]  T. Loredo,et al.  Pencil-Beam Surveys for Faint Trans-Neptunian Objects , 1998, astro-ph/9806344.

[2]  S. Kenyon,et al.  The Size Distribution of Kuiper Belt Objects , 2004, astro-ph/0406556.

[3]  L. Jones,et al.  The Orbital and Spatial Distribution of the Kuiper Belt , 2008 .

[4]  J. S. Dohnanyi Collisional model of asteroids and their debris , 1969 .

[5]  Chadwick A. Trujillo,et al.  The Radial Distribution of the Kuiper Belt , 2001 .

[6]  Cesar I. Fuentes,et al.  A SUBARU ARCHIVAL SEARCH FOR FAINT TRANS-NEPTUNIAN OBJECTS , 2008 .

[7]  Re'em Sari,et al.  Shaping the Kuiper belt size distribution by shattering large but strengthless bodies , 2005 .

[8]  R. Greenberg,et al.  Steady-State Size Distributions for Collisional Populations: Analytical Solution with Size-Dependent Strength , 2003, 1407.3307.

[9]  Renu Malhotra,et al.  The origin of Pluto's peculiar orbit , 1995, Nature.

[10]  Thomas J. Loredo Accounting for Source Uncertainties in Analyses of Astronomical Survey Data , 2004 .

[11]  Dale P. Cruikshank,et al.  The solar system beyond Neptune , 2008 .

[12]  Alessandro Morbidelli,et al.  The Structure of the Kuiper Belt: Size Distribution and Radial Extent , 2001 .

[13]  David Trilling,et al.  Physical Properties of Kuiper Belt and Centaur Objects: Constraints from the Spitzer Space Telescope , 2007 .

[14]  Harold F. Levison,et al.  THE FORMATION OF URANUS AND NEPTUNE AMONG JUPITER AND SATURN , 2001, astro-ph/0111290.

[15]  G. Bernstein,et al.  Observational Limits on a Distant Cold Kuiper Belt , 2002 .

[16]  V. Safronov,et al.  Relative sizes of the largest bodies during the accumulation of planets , 1969 .

[17]  Gravitational Stirring in Planetary Debris Disks , 2000, astro-ph/0009185.

[18]  C. Hayashi Structure of the Solar Nebula, Growth and Decay of Magnetic Fields and Effects of Magnetic and Turbulent Viscosities on the Nebula , 1981 .

[19]  T. Loredo,et al.  The Kuiper Belt luminosity function from mR = 22 to 25 , 2006 .

[20]  W. Grundy,et al.  Diverse albedos of small trans-neptunian objects , 2005, astro-ph/0502229.

[21]  B. Gladman,et al.  Production of the Extended Scattered Disk by Rogue Planets , 2006 .

[22]  Chadwick A. Trujillo,et al.  Properties of the Trans-Neptunian Belt: Statistics from the Canada-France-Hawaii Telescope Survey , 2001 .

[23]  C. Trujillo,et al.  Large Kuiper Belt Objects: The Mauna Kea 8K CCD Survey , 1998 .

[24]  S. Kenyon Planet Formation in the Outer Solar System , 2001, astro-ph/0112120.

[25]  Robert Jedicke,et al.  The fossilized size distribution of the main asteroid belt , 2003 .

[26]  M. E. Brown,et al.  The Size Distribution of Trans-Neptunian Bodies* , 2004 .

[27]  E. Chiang,et al.  Keck Pencil-Beam Survey for Faint Kuiper Belt Objects , 1999, astro-ph/9905292.