Centromeres in cell division, evolution, nuclear organization and disease

As the spindle fiber attachment region of the chromosome, the centromere has been investigated in a variety of contexts. Here, we will review current knowledge about this unique chromosomal region and its relevance for proper cell division, speciation, and disease. Understanding the three‐dimensional organization of centromeres in normal and tumor cells is just beginning to emerge. Multidisciplinary research will allow for new insights into its normal and aberrant nuclear organization and may allow for new therapeutic interventions that target events linked to centromere function and cell division. J. Cell. Biochem. 104: 2040–2058, 2008. © 2008 Wiley‐Liss, Inc.

[1]  H. Kampinga,et al.  Nuclear matrix as a target for hyperthermic killing of cancer cells. , 1998, Cell stress & chaperones.

[2]  G. Klein,et al.  Evolutionarily plastic regions at human 3p21.3 coincide with tumor breakpoints identified by the "elimination test". , 2005, Genomics.

[3]  R. Castiglia,et al.  Chromosomes and speciation in Mus musculus domesticus , 2004, Cytogenetic and Genome Research.

[4]  Jörg Maser,et al.  X‐ray fluorescence microprobe imaging in biology and medicine , 2006, Journal of cellular biochemistry.

[5]  L. Magnaghi-Jaulin,et al.  Histone deacetylase inhibitors induce premature sister chromatid separation and override the mitotic spindle assembly checkpoint. , 2007, Cancer research.

[6]  W. Bickmore,et al.  Nuclear organization of centromeric domains is not perturbed by inhibition of histone deacetylases , 2004, Chromosome Research.

[7]  J. Welborn Acquired Robertsonian translocations are not rare events in acute leukemia and lymphoma. , 2004, Cancer genetics and cytogenetics.

[8]  L. Shaffer,et al.  Robertsonian translocations: mechanisms of formation, aneuploidy, and uniparental disomy and diagnostic considerations. , 2002, Genetic testing.

[9]  R. O’Neill,et al.  Genomic Instability Within Centromeres of Interspecific Marsupial Hybrids , 2007, Genetics.

[10]  D. Blackwood,et al.  Mapping studies on a pericentric inversion (18) (p11.31 q21.1) in a family with both schizophrenia and learning disability. , 1999, Psychiatric genetics.

[11]  J. Nielsen,et al.  Chromosome abnormalities found among 34910 newborn children: results from a 13-year incidence study in Århus, Denmark , 2005, Human Genetics.

[12]  C. Catapano,et al.  The nuclear matrix as a target for cancer therapy. , 1996, Annals of oncology : official journal of the European Society for Medical Oncology.

[13]  T. Noda,et al.  The selective continued linkage of centromeres from mitosis to interphase in the absence of mammalian separase , 2006, The Journal of cell biology.

[14]  N. Marziliano,et al.  Pericentromeric organization at the fusion point of mouse Robertsonian translocation chromosomes. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[15]  B. Mcclintock The association of non-homologous parts of chromosomes in the mid-prophase of meiosis in zea mays , 1933, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[16]  K. Choo,et al.  Effects of Scaffold/Matrix Alteration on Centromeric Function and Gene Expression* , 2004, Journal of Biological Chemistry.

[17]  Jack R. Davis,et al.  Identification and characterization of a novel gene disrupted by a pericentric inversion inv(4)(p13.1q21.1) in a family with cleft lip. , 2003, Gene.

[18]  W. Bickmore,et al.  Distinctive nuclear organisation of centromeres and regions involved in pluripotency in human embryonic stem cells , 2005, Journal of Cell Science.

[19]  M. Narbaitz,et al.  Inversions of chromosomes 2 and 6 in mantle cell lymphoma. Cytogenetic, FISH, and molecular studies. , 2006, Cancer genetics and cytogenetics.

[20]  P. Ridgway,et al.  H2A.Z contributes to the unique 3D structure of the centromere , 2007, Proceedings of the National Academy of Sciences.

[21]  T. Cremer,et al.  Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions , 2007, Nature Reviews Genetics.

[22]  Nathalie Beaujean,et al.  Genome restructuring in mouse embryos during reprogramming and early development. , 2006, Developmental biology.

[23]  Chuanmao Zhang,et al.  Small-molecule inhibition of Aurora kinases triggers spindle checkpoint-independent apoptosis in cancer cells. , 2008, Biochemical pharmacology.

[24]  George W. Bell,et al.  Mapping of Meiotic Single-Stranded DNA Reveals Double-Strand-Break Hotspots near Centromeres and Telomeres , 2007, Current Biology.

[25]  K. Choo,et al.  Neocentromeres: role in human disease, evolution, and centromere study. , 2002, American journal of human genetics.

[26]  L. Schaefer,et al.  Generalized approach for accelerated maximum likelihood based image restoration applied to three‐dimensional fluorescence microscopy , 2001, Journal of microscopy.

[27]  E. Eichler,et al.  Recurrent sites for new centromere seeding. , 2004, Genome research.

[28]  Yuda Fang,et al.  Centromere positioning and dynamics in living Arabidopsis plants. , 2005, Molecular biology of the cell.

[29]  Gerry McDermott,et al.  X-ray tomography of whole cells. , 2005, Current opinion in structural biology.

[30]  J. Egozcue,et al.  Sperm studies in heterozygote inversion carriers: a review , 2005, Cytogenetic and Genome Research.

[31]  Gaudenz Danuser,et al.  FRET or no FRET: a quantitative comparison. , 2003, Biophysical journal.

[32]  J. Wehland,et al.  IrpA , is highly homologous to monocytogenesPrfA-regulated gene in Listeria Identification and characterization of a novel , 1996 .

[33]  María Méndez-Lago,et al.  Centromeres were derived from telomeres during the evolution of the eukaryotic chromosome , 2007, Proceedings of the National Academy of Sciences.

[34]  A. Esposito,et al.  Meiotic recombination and spermatogenic impairment in Mus musculus domesticus carrying multiple simple Robertsonian translocations , 2004, Cytogenetic and Genome Research.

[35]  R. Eils,et al.  Three-Dimensional Maps of All Chromosomes in Human Male Fibroblast Nuclei and Prometaphase Rosettes , 2005, PLoS biology.

[36]  K. McDonald,et al.  Cryopreparation methods for electron microscopy of selected model systems. , 2007, Methods in cell biology.

[37]  A. Ullrich,et al.  Targeting polo-like kinase 1 for cancer therapy , 2006, Nature Reviews Cancer.

[38]  M. Esteller Cancer epigenomics: DNA methylomes and histone-modification maps , 2007, Nature Reviews Genetics.

[39]  K. Choo,et al.  Early disruption of centromeric chromatin organization in centromere protein A (Cenpa) null mice. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[40]  J. Elf,et al.  Probing Transcription Factor Dynamics at the Single-Molecule Level in a Living Cell , 2007, Science.

[41]  N. Tommerup,et al.  Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene , 1999, Nature.

[42]  C. D. Darlington The External Mechanics of the Chromosomes. I--The Scope of Enquiry , 1936 .

[43]  K. Sullivan,et al.  Suppression of centromere dynamics by Taxol in living osteosarcoma cells. , 2003, Cancer research.

[44]  S. Mai,et al.  c-Myc-dependent formation of Robertsonian translocation chromosomes in mouse cells. , 2007, Neoplasia.

[45]  J. Gourret Modelling the mitotic apparatus , 1995, Acta biotheoretica.

[46]  F. Hecht,et al.  Chromosome abnormalities and genetic counseling. , 1990 .

[47]  Th. Boveri,et al.  The origin of malignant tumors , 1929 .

[48]  Peter W. Laird,et al.  DNA Hypomethylation and Ovarian Cancer Biology , 2004, Cancer Research.

[49]  P. Warburton Chromosomal dynamics of human neocentromere formation , 2004, Chromosome Research.

[50]  K. Choo,et al.  A rapid method of genomic array analysis of scaffold/matrix attachment regions (S/MARs) identifies a 2.5-Mb region of enhanced scaffold/matrix attachment at a human neocentromere. , 2003, Genome research.

[51]  Christian B. Woods,et al.  Quantitative analysis of associations between DNA hypermethylation, hypomethylation, and DNMT RNA levels in ovarian tumors , 2006, Oncogene.

[52]  B. Brinkley,et al.  Structure and dynamic organization of centromeres/prekinetochores in the nucleus of mammalian cells. , 1996, Journal of cell science.

[53]  J. Qian,et al.  Constitutional Robertsonian translocations in (9;22)-positive chronic myelogenous leukemia. , 2002, Cancer genetics and cytogenetics.

[54]  M. Schmid,et al.  Characterization of centromere arrangements and test for random distribution in G0, G1, S, G2, G1, and early S′ phase in human lymphocytes , 1992, Human Genetics.

[55]  Kees Jalink,et al.  Correcting confocal acquisition to optimize imaging of fluorescence resonance energy transfer by sensitized emission. , 2004, Biophysical journal.

[56]  P. Pandolfi,et al.  Essential Role for Nuclear PTEN in Maintaining Chromosomal Integrity , 2007, Cell.

[57]  K. Choo,et al.  A functional neo-centromere formed through activation of a latent human centromere and consisting of non-alpha-satellite DNA , 1997, Nature Genetics.

[58]  S. Hell Toward fluorescence nanoscopy , 2003, Nature Biotechnology.

[59]  Thomas Cremer,et al.  Von der Zellenlehre zur Chromosomentheorie , 1985 .

[60]  W. Baumeister,et al.  Perspectives of molecular and cellular electron tomography. , 1997, Journal of structural biology.

[61]  Alexey Khodjakov,et al.  Mitosis Through the Microscope: Advances in Seeing Inside Live Dividing Cells , 2003, Science.

[62]  P. Eyers,et al.  VX-680 Inhibits Aurora A and Aurora B Kinase Activity in Human Cells , 2007, Cell cycle.

[63]  B. Goossens,et al.  Aerial Surveys Give New Estimates for Orangutans in Sabah, Malaysia , 2004, PLoS biology.

[64]  M. Malac,et al.  Radiation damage in the TEM and SEM. , 2004, Micron.

[65]  Yuval Garini,et al.  Spectral imaging: Principles and applications , 2006, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[66]  S. Diekmann,et al.  Assembly of the Inner Kinetochore Proteins CENP‐A and CENP‐B in Living Human Cells , 2008, Chembiochem : a European journal of chemical biology.

[67]  D. Bazett-Jones,et al.  Structure analysis of small proteins by electron microscopy: valinomycin, bacitracin and low molecular weight cell growth stimulators. , 1978, Ultramicroscopy.

[68]  M. Gustafsson Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[69]  J. Lupski,et al.  Implications of human genome architecture for rearrangement-based disorders: the genomic basis of disease. , 2004, Human molecular genetics.

[70]  J. Squire,et al.  Identification of a High Frequency of Chromosomal Rearrangements in the Centromeric Regions of Prostate Cancer Cell Lines by Sequential Giemsa Banding and Spectral Karyotyping , 2000, Molecular Diagnosis.

[71]  S. Phadke,et al.  Pericentric inversion causing duplication and deletion of chromosome region 13q22 → qter in the offspring , 2007, American Journal of Medical Genetics. Part A.

[72]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[73]  S. Spunt,et al.  Complex t(X;18)(p11.2;q11.2) with a pericentric inversion of the X chromosome in an adolescent boy with synovial sarcoma. , 2002, Cancer genetics and cytogenetics.

[74]  X. Xie,et al.  Living Cells as Test Tubes , 2006, Science.

[75]  M. Nachman,et al.  Why is the house mouse karyotype so variable? , 1995, Trends in ecology & evolution.

[76]  K. McElreavey,et al.  Sperm-FISH analysis in a pericentric chromosome 1 inversion, 46,XY,inv(1)(p22q42), associated with infertility. , 2007, Molecular human reproduction.

[77]  D. Galimberti,et al.  Epilepsy and Electroencephalographic Findings in Pericentric Inversion of Chromosome 12 , 2004, Journal of child neurology.

[78]  S. Henikoff,et al.  Structure, dynamics, and evolution of centromeric nucleosomes , 2007, Proceedings of the National Academy of Sciences.

[79]  Joshua P. Mauldin,et al.  Characterization of spectral FRET imaging microscopy for monitoring nuclear protein interactions , 2007, Journal of microscopy.

[80]  J. Susini,et al.  Table-top water window transmission x-ray microscopy: Review of the key issues, and conceptual design of an instrument for biology , 2005 .

[81]  P. Thall,et al.  Adaptive therapy for androgen-independent prostate cancer: a randomized selection trial of four regimens. , 2007, Journal of the National Cancer Institute.

[82]  J. Searle,et al.  The effects of Robertsonian fusions on chiasma frequency and distribution in the house mouse (Mus musculus domesticus) from a hybrid zone in northern Scotland , 2001, Heredity.

[83]  P. Piomboni,et al.  TEM, FISH and molecular studies in infertile men with pericentric inversion of chromosome 9 , 2006, Andrologia.

[84]  D. S. Coffey,et al.  Hyperthermic biology and cancer therapies: a hypothesis for the "Lance Armstrong effect". , 2006, JAMA.

[85]  T. Misteli,et al.  Spatial genome organization during T-cell differentiation , 2004, Cytogenetic and Genome Research.

[86]  N. Ahmad,et al.  Regulation of mitosis via mitotic kinases: new opportunities for cancer management. , 2008, Molecular cancer therapeutics.

[87]  U. Dutta,et al.  De novo pericentric inversion of chromosome 4, inv(4)(p16q12) in a boy with piebaldism and mental retardation. , 2002, American journal of medical genetics.

[88]  D. E. Wolf Fundamentals of fluorescence and fluorescence microscopy. , 2007, Methods in cell biology.

[89]  K. Choo,et al.  Centromere Protein B Null Mice are Mitotically and Meiotically Normal but Have Lower Body and Testis Weights , 1998, Journal of Cell Biology.

[90]  Michael Beil,et al.  Spatial distribution patterns of interphase centromeres during retinoic acid-induced differentiation of promyelocytic leukemia cells. , 2002, Cytometry.

[91]  B. Gill,et al.  The centromere structure in Robertsonian wheat-rye translocation chromosomes indicates that centric breakage-fusion can occur at different positions within the primary constriction , 2001, Chromosoma.

[92]  H. Ribbert,et al.  Zur Frage der Entstehung maligner Tumoren , 1914, Naturwissenschaften.

[93]  A. E. Hall,et al.  Dynamic evolution at pericentromeres. , 2006, Genome research.

[94]  Jane Bayani,et al.  Genomic mechanisms and measurement of structural and numerical instability in cancer cells. , 2007, Seminars in cancer biology.

[95]  M. Bartholdi,et al.  Nuclear distribution of centromeres during the cell cycle of human diploid fibroblasts. , 1991, Journal of cell science.

[96]  Stefan W. Hell,et al.  Lateral resolution of 28 nm (λ /25) in far-field fluorescence microscopy , 2003 .

[97]  Mathias Schmidt,et al.  Mitotic drug targets and the development of novel anti-mitotic anticancer drugs. , 2007, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[98]  Pamela A Silver,et al.  Developmentally induced changes in transcriptional program alter spatial organization across chromosomes. , 2005, Genes & development.

[99]  C. D. Darlington,et al.  Misdivision and the genetics of the centromere , 1939, Journal of Genetics.

[100]  A. Steven,et al.  The next ice age: cryo-electron tomography of intact cells. , 2003, Trends in cell biology.

[101]  G. Almouzni,et al.  Reversible disruption of pericentric heterochromatin and centromere function by inhibiting deacetylases , 2001, Nature Cell Biology.

[102]  B. Mcclintock,et al.  A Correlation of Ring-Shaped Chromosomes with Variegation in Zea Mays. , 1932, Proceedings of the National Academy of Sciences of the United States of America.

[103]  B. Niemann,et al.  Computed tomography of cryogenic biological specimens based on X-ray microscopic images. , 2000, Ultramicroscopy.

[104]  T. Ried,et al.  Myc/p53 interactions in transgenic mouse mammary development, tumorigenesis and chromosomal instability , 1998, Oncogene.

[105]  R. Egerton Physical Principles of Electron Microscopy: An Introduction to TEM, SEM, and AEM , 2010 .

[106]  K. Choo,et al.  Human centromere repositioning "in progress". , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[107]  D. Zink,et al.  Architectural reorganization of the nuclei upon transfer into oocytes accompanies genome reprogramming , 2006, Molecular reproduction and development.

[108]  M. N. Lebbink,et al.  Template matching as a tool for annotation of tomograms of stained biological structures. , 2007, Journal of structural biology.

[109]  M. Szyf,et al.  Epigenetic tête-à-tête: the bilateral relationship between chromatin modifications and DNA methylation. , 2006, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[110]  T. Jovin,et al.  FRET imaging , 2003, Nature Biotechnology.

[111]  Thomas Cremer,et al.  Differences in centromere positioning of cycling and postmitotic human cell types , 2004, Chromosoma.

[112]  M. Ehrlich,et al.  Frequent hypomethylation in Wilms tumors of pericentromeric DNA in chromosomes 1 and 16. , 1999, Cancer genetics and cytogenetics.

[113]  M. Mancini,et al.  Pericentric chromosome 8 inversion associated with the 5′RUNX1/3′CBFA2T1 gene in acute myeloid leukemia cases , 2005, Annals of Hematology.

[114]  M. L. Le Gros,et al.  X-ray tomography generates 3-D reconstructions of the yeast, saccharomyces cerevisiae, at 60-nm resolution. , 2003, Molecular biology of the cell.

[115]  C. Larabell,et al.  High resolution protein localization using soft X‐ray microscopy , 2001, Journal of microscopy.

[116]  E. Winzeler,et al.  Genomic and Genetic Definition of a Functional Human Centromere , 2001, Science.

[117]  P. Jacobs Mutation rates of structural chromosome rearrangements in man. , 1981, American journal of human genetics.

[118]  Harald F. Hess,et al.  DEVELOPING PHOTOACTIVATED LOCALIZATION MICROSCOPY (PALM) , 2007, 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[119]  K. Choo,et al.  Targeted disruption of mouse centromere protein C gene leads to mitotic disarray and early embryo death. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[120]  K. Choo,et al.  Mouse telocentric sequences reveal a high rate of homogenization and possible role in Robertsonian translocation. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[121]  M. Dimopoulos,et al.  Combination of LHRH analog with somatostatin analog and dexamethasone versus chemotherapy in hormone-refractory prostate cancer: a randomized phase II study. , 2004, Urology.

[122]  M. Lei,et al.  Normal Cells, but Not Cancer Cells, Survive Severe Plk1 Depletion , 2006, Molecular and Cellular Biology.

[123]  Fengtang Yang,et al.  Comparative cytogenetics of human chromosome 3q21.3 reveals a hot spot for ectopic recombination in hominoid evolution. , 2005, Genomics.

[124]  R. O’Neill,et al.  Species-specific shifts in centromere sequence composition are coincident with breakpoint reuse in karyotypically divergent lineages , 2007, Genome Biology.

[125]  P. Sorensen,et al.  Spectral karyotyping identifies recurrent complex rearrangements of chromosomes 8, 17, and 20 in osteosarcomas , 2003, Genes, chromosomes & cancer.

[126]  M. Ehrlich,et al.  Satellite DNA hypomethylation vs. overall genomic hypomethylation in ovarian epithelial tumors of different malignant potential. , 1999, Mutation research.

[127]  T. Kapoor,et al.  The centromere geometry essential for keeping mitosis error free is controlled by spindle forces , 2007, Nature.

[128]  P. Thall,et al.  Randomized, multicenter, phase II trial of two multicomponent regimens in androgen-independent prostate cancer. , 2003, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[129]  K. Choo,et al.  Human centromeres and neocentromeres show identical distribution patterns of >20 functionally important kinetochore-associated proteins. , 2000, Human molecular genetics.

[130]  Süleyman Cenk Sahinalp,et al.  Organization and Evolution of Primate Centromeric DNA from Whole-Genome Shotgun Sequence Data , 2007, PLoS Comput. Biol..

[131]  L. E. Mitchell,et al.  Transmission Ratio Distortion in Offspring of Mouse Heterozygous Carriers of a (7.18) Robertsonian Translocation , 2005, Genetics.

[132]  E. Schröck,et al.  Jumping translocations are common in solid tumor cell lines and result in recurrent fusions of whole chromosome arms , 2001, Genes, chromosomes & cancer.

[133]  H. Levin,et al.  Phase II trial of neoadjuvant estramustine and etoposide plus radical prostatectomy for locally advanced prostate cancer. , 2001, Urology.

[134]  W. Flemming Zellsubstanz, Kern und Zelltheilung , 1882 .

[135]  T. W. Ridler,et al.  Picture thresholding using an iterative selection method. , 1978 .

[136]  D. Gül,et al.  De novo pericentric inversion of chromosome 5 in a girl with mental retardation and unilateral ear malformation , 2006, American journal of medical genetics. Part A.

[137]  K. Fowler,et al.  Partially functional Cenpa–GFP fusion protein causes increased chromosome missegregation and apoptosis during mouse embryogenesis , 2004, Chromosome Research.

[138]  Elodie Gazave,et al.  The non-random occurrence of Robertsonian fusion in the house mouse. , 2003, Genetical research.

[139]  J. Squire,et al.  Correlating breakage-fusion-bridge events with the overall chromosomal instability and in vitro karyotype evolution in prostate cancer , 2007, Cytogenetic and Genome Research.

[140]  Mayuko Sakai,et al.  Acute myelogeneous leukemia (M5a) that demonstrated chromosomal abnormality of robertsonian 13;21 translocation at onset. , 2004, Internal medicine.

[141]  Karolin Luger,et al.  Structural determinants for generating centromeric chromatin , 2004, Nature.

[142]  Y. Garini,et al.  Alterations of centromere positions in nuclei of immortalized and malignant mouse lymphocytes , 2007, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[143]  R. Oakey,et al.  Nondisjunction and transmission ratio distortion ofChromosome 2 in a (2.8) Robertsonian translocation mouse strain , 2006, Mammalian Genome.

[144]  J. Abgrall,et al.  Jumping translocations in multiple myeloma. , 2005, Cancer genetics and cytogenetics.

[145]  K. Choo Centromere DNA dynamics: latent centromeres and neocentromere formation. , 1997, American journal of human genetics.

[146]  J Herman,et al.  Aberrant methylation of the adenomatous polyposis coli (APC) gene promoter 1A in breast and lung carcinomas. , 2001, Clinical cancer research : an official journal of the American Association for Cancer Research.

[147]  C. Fuster,et al.  Duplication 19q13-qter and deletion 19p13-pter arising from an inversion (19)(p13.3q13.3) of maternal origin. , 2006, European journal of medical genetics.

[148]  Yuval Garini,et al.  From micro to nano: recent advances in high-resolution microscopy. , 2005, Current opinion in biotechnology.

[149]  M. Beil,et al.  Statistical analysis of the three‐dimensional structure of centromeric heterochromatin in interphase nuclei , 2005, Journal of microscopy.

[150]  K. Choo,et al.  Transcription within a functional human centromere. , 2003, Molecular cell.

[151]  Victoria J Allan,et al.  Light Microscopy Techniques for Live Cell Imaging , 2003, Science.

[152]  K. Pienta,et al.  Inhibition of prostate cancer growth by estramustine and etoposide: evidence for interaction at the nuclear matrix. , 1993, The Journal of urology.

[153]  L. Shaffer,et al.  Chromosome Abnormalities and Genetic Counseling , 1989 .