Using Regression Kernels to Forecast A Failure to Appear in Court
暂无分享,去创建一个
Jaime Henderson | Richard Berk | Adam Kapelner | Justin Bleich | Geoffrey Barnes | Ellen Kurtz | R. Berk | G. Barnes | E. Kurtz | J. Bleich | A. Kapelner | Jaime Henderson
[1] Paul T. Seed,et al. The use of cost information when defining critical values for prediction of rare events by using logistic regression and similar methods , 2010 .
[2] Richard A. Berk,et al. Statistical Procedures for Forecasting Criminal Behavior , 2013 .
[3] Klaus Nordhausen,et al. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition by Trevor Hastie, Robert Tibshirani, Jerome Friedman , 2009 .
[4] Trevor Hastie,et al. The Elements of Statistical Learning , 2001 .
[5] Greg Ridgeway,et al. Linking prediction and prevention , 2013 .
[6] G. Wahba,et al. Smoothing spline ANOVA for exponential families, with application to the Wisconsin Epidemiological Study of Diabetic Retinopathy : the 1994 Neyman Memorial Lecture , 1995 .
[7] R. Tibshirani. A signicance test for the lasso , 2014 .
[8] H. Chipman,et al. BART: Bayesian Additive Regression Trees , 2008, 0806.3286.
[9] M. Kenward,et al. An Introduction to the Bootstrap , 2007 .
[10] H. White. Maximum Likelihood Estimation of Misspecified Models , 1982 .
[11] Alan J. Tomkins,et al. Reducing courts' failure-to-appear rate by written reminders , 2013 .
[12] Glenn Zorpette,et al. The pitfalls of prediction [Spectral Lines] , 2014 .
[13] B. Efron. Better Bootstrap Confidence Intervals , 1987 .
[14] H. White. Using Least Squares to Approximate Unknown Regression Functions , 1980 .
[15] Bernhard Schölkopf,et al. A Generalized Representer Theorem , 2001, COLT/EuroCOLT.
[16] Radford M. Neal. Pattern Recognition and Machine Learning , 2007, Technometrics.
[17] A. E. Hoerl,et al. Ridge regression:some simulations , 1975 .
[18] Leo Breiman,et al. Statistical Modeling: The Two Cultures (with comments and a rejoinder by the author) , 2001, Statistical Science.
[19] Erika Cule,et al. Ridge Regression in Prediction Problems: Automatic Choice of the Ridge Parameter , 2013, Genetic epidemiology.
[20] Jerome E. McElroy. Introduction to the Manhattan Bail Project , 2011 .
[21] A. Gelfand,et al. Prediction in Criminology. , 1986 .
[22] B. M. Pötscher,et al. MODEL SELECTION AND INFERENCE: FACTS AND FICTION , 2005, Econometric Theory.
[23] Howard G. Borden. Factors for Predicting Parole Success , 1928 .
[24] Julian J. Faraway,et al. Does data splitting improve prediction? , 2013, Stat. Comput..
[25] M. Bhaskara Rao,et al. Model Selection and Inference , 2000, Technometrics.
[26] David Mease,et al. Boosted Classification Trees and Class Probability/Quantile Estimation , 2007, J. Mach. Learn. Res..
[27] R. Schaefer,et al. A ridge logistic estimator , 1984 .
[28] A. Buja,et al. Valid post-selection inference , 2013, 1306.1059.
[29] Sara van de Geer,et al. Statistics for High-Dimensional Data , 2011 .
[30] Richard A. Berk,et al. Statistical Inference After Model Selection , 2010 .
[31] Joshua B. Tenenbaum,et al. Structure Discovery in Nonparametric Regression through Compositional Kernel Search , 2013, ICML.
[32] R. Tibshirani,et al. A SIGNIFICANCE TEST FOR THE LASSO. , 2013, Annals of statistics.
[33] S. D. Gottfredson,et al. Statistical Risk Assessment: Old Problems and New Applications , 2006 .
[34] H. Leeb,et al. CAN ONE ESTIMATE THE UNCONDITIONAL DISTRIBUTION OF POST-MODEL-SELECTION ESTIMATORS? , 2003, Econometric Theory.
[35] Leo Breiman,et al. Random Forests , 2001, Machine Learning.
[36] Andreas Buja,et al. The Conspiracy of Random Predictors and Model Violations against Classical Inference in Regression , 2014 .
[37] M. Iorio,et al. A semi-automatic method to guide the choice of ridge parameter in ridge regression , 2012, 1205.0686.
[38] Joshua B. Tenenbaum,et al. Exploiting compositionality to explore a large space of model structures , 2012, UAI.
[39] R. Tibshirani,et al. Generalized Additive Models , 1991 .
[40] Kai Zhang,et al. Models as Approximations I: Consequences Illustrated with Linear Regression , 2014, Statistical Science.
[41] R. Berk. Criminal Justice Forecasts of Risk: A Machine Learning Approach , 2012 .
[42] S. R. Searle,et al. Matrix Algebra Useful for Statistics , 1982 .
[43] John S. Goldkamp,et al. Restoring accountability in pretrial release: the Philadelphia pretrial release supervision experiments , 2006 .
[44] Andreas Buja,et al. Misspecified Mean Function Regression , 2014 .
[45] John C. Nankervis,et al. Computational algorithms for double bootstrap confidence intervals , 2005, Comput. Stat. Data Anal..
[46] Shawn D. Bushway,et al. Is There Any Logic to Using Logit Finding the Right Tool for the Increasingly Important Job of Risk Prediction , 2013 .
[47] R. Dawes,et al. Heuristics and Biases: Clinical versus Actuarial Judgment , 2002 .
[48] Shyam S. Chandramouli,et al. Large-Scale Sparse Kernel Logistic Regression — with a comparative study on optimization algorithms , 2011 .
[49] Richard A. Berk,et al. Overview of: “Statistical Procedures for Forecasting Criminal Behavior: A Comparative Assessment” , 2013 .
[50] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[51] A. Reiss,. The Accuracy, Efficiency, and Validity of a Prediction Instrument , 1951, American Journal of Sociology.
[52] Ali Shojaie,et al. Inference in High Dimensions with the Penalized Score Test , 2014, 1401.2678.
[53] Ji Zhu,et al. Kernel Logistic Regression and the Import Vector Machine , 2001, NIPS.
[54] S. Cessie,et al. Ridge Estimators in Logistic Regression , 1992 .
[55] J. Friedman. Stochastic gradient boosting , 2002 .