OPTIMIZATION THEORY FOR SET FUNCTIONS IN NONDIFFERENTIABLE FRACTIONAL PROGRAMMING WITH MIXED TYPE DUALITY

We revisit optimization theory involving set functions which are defined on a family of measurable subsets in a measure space. In this paper, we focus on a minimax fractional programming problem with subdifferentiable set functions. Using nonparametric necessary optimality conditions, we introduce generalized $(\mathcal{F},\rho, \theta)$-convexity to establish several sufficient optimality conditions for a minimax programming problem, and construct a new dual model to unify the Wolfe type dual and the Mond-Weir type dual as special cases of this dual programming problem. Finally we establish a weak, strong, and strict converse duality theorem.

[1]  J. C. Liu,et al.  On Minimax Fractional Programming of Generalized Convex Set Functions , 2000 .

[2]  Hang-Chin Lai,et al.  Duality for a Minimax Programming Problem Containingn-Set Functions , 1999 .

[3]  Hang-Chin Lai,et al.  Optimality Conditions for Multiobjective Programming with Generalized (I, ρ, θ)-Convex Set Functions , 1997 .

[4]  Vasile Preda,et al.  On Duality of Multiobjective Fractional Measurable Subset Selection Problems , 1995 .

[5]  Hang-Chin Lai,et al.  Alternative theorems and saddlepoint results for convex programming problems of set functions with values in ordered vector spaces , 1994 .

[6]  Lai-Jiu Lin,et al.  On the optimality conditions of vector-valued n-set functions☆ , 1991 .

[7]  Lai-Jiu Lin,et al.  Optimality of differentiable, vector-valued n-set functions☆ , 1990 .

[8]  Lai-Jiu Lin,et al.  Optimality for set functions with values in ordered vector spaces , 1989 .

[9]  Lai-Jiu Lin,et al.  Moreau-Rockafellar Type Theorem for Convex Set Functions* , 1988 .

[10]  H. W. Corley,et al.  Optimization Theory for n-Set Functions , 1987 .

[11]  H. W. Corley,et al.  Existence and Lagrangian duality for maximizations of set-valued functions , 1987 .

[12]  H. Lai,et al.  Duality in mathematical programming of set functions: On Fenchel duality theorem , 1983 .

[13]  H. Lai,et al.  Saddle point and duality in the optimization theory of convex set functions , 1982, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[14]  Robert J. T. Morris,et al.  Optimal constrained selection of a measurable subset , 1979 .

[15]  D. Begis,et al.  Application de la méthode des éléments finis à l'approximation d'un problème de domaine optimal. Méthodes de résolution des problèmes approchés , 1975 .

[16]  H. W. Corley,et al.  A Partitioning Problem with Applications in Regional Design , 1972, Oper. Res..

[17]  H. Lai,et al.  Optimization analysis involving set functions. , 2002 .

[18]  V. Preda,et al.  Oil minmax programming problems containing n-set functions , 1991 .

[19]  G. J. Zaimai Optimality conditions and duality for constrained measurable subset selection problems with minmax objective functions , 1989 .

[20]  Hang-Chin Lai,et al.  The Fenchel-Moreau theorem for set functions , 1988 .