Non-lethal Inhibition of Gut Microbial Trimethylamine Production for the Treatment of Atherosclerosis

[1]  S. Yusuf,et al.  The Relationship Between Trimethylamine-N-Oxide and Prevalent Cardiovascular Disease in a Multiethnic Population Living in Canada. , 2015, The Canadian journal of cardiology.

[2]  T. Karlsen,et al.  Microbiota‐dependent metabolite trimethylamine‐N‐oxide is associated with disease severity and survival of patients with chronic heart failure , 2015, Journal of internal medicine.

[3]  Ji Miao,et al.  Flavin-containing monooxygenase 3 as a potential player in diabetes-associated atherosclerosis , 2015, Nature Communications.

[4]  F. Rey,et al.  Intestinal Microbiota Composition Modulates Choline Bioavailability from Diet and Accumulation of the Proatherogenic Metabolite Trimethylamine-N-Oxide , 2015, mBio.

[5]  Richard G. Lee,et al.  The TMAO-Generating Enzyme Flavin Monooxygenase 3 Is a Central Regulator of Cholesterol Balance. , 2015, Cell reports.

[6]  S. Hazen,et al.  The gut microbial endocrine organ: bacterially derived signals driving cardiometabolic diseases. , 2015, Annual review of medicine.

[7]  Richard G. Lee,et al.  Flavin containing monooxygenase 3 exerts broad effects on glucose and lipid metabolism and atherosclerosis[S] , 2015, Journal of Lipid Research.

[8]  Brian J. Bennett,et al.  Transmission of Atherosclerosis Susceptibility with Gut Microbial Transplantation* , 2014, The Journal of Biological Chemistry.

[9]  W. Atkinson,et al.  Betaine and Trimethylamine-N-Oxide as Predictors of Cardiovascular Outcomes Show Different Patterns in Diabetes Mellitus: An Observational Study , 2014, PloS one.

[10]  S. Hazen,et al.  Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: refining the gut hypothesis. , 2014, Journal of the American College of Cardiology.

[11]  S. Hazen,et al.  γ-Butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of L-carnitine to TMAO. , 2014, Cell metabolism.

[12]  M. Blaser,et al.  Altering the Intestinal Microbiota during a Critical Developmental Window Has Lasting Metabolic Consequences , 2014, Cell.

[13]  S. Hazen,et al.  Measurement of trimethylamine-N-oxide by stable isotope dilution liquid chromatography tandem mass spectrometry. , 2014, Analytical biochemistry.

[14]  S. Hazen,et al.  Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. , 2014, European heart journal.

[15]  K. Rajakumar,et al.  Carnitine metabolism to trimethylamine by an unusual Rieske-type oxygenase from human microbiota , 2014, Proceedings of the National Academy of Sciences.

[16]  Todd R Klaenhammer,et al.  Probiotics, prebiotics, and the host microbiome: the science of translation , 2013, Annals of the New York Academy of Sciences.

[17]  S. Hazen,et al.  Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. , 2013, The New England journal of medicine.

[18]  Brian J. Bennett,et al.  Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. , 2013, Cell metabolism.

[19]  E. Balskus,et al.  Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme , 2012, Proceedings of the National Academy of Sciences.

[20]  M. Blaser,et al.  The human microbiome: at the interface of health and disease , 2012, Nature Reviews Genetics.

[21]  F. Bushman,et al.  Linking Long-Term Dietary Patterns with Gut Microbial Enterotypes , 2011, Science.

[22]  Brian J. Bennett,et al.  Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease , 2011, Nature.

[23]  Rob Knight,et al.  Human oral, gut, and plaque microbiota in patients with atherosclerosis , 2010, Proceedings of the National Academy of Sciences.

[24]  W. W. Cheyne,et al.  Investigations Into the Etiology of Traumatic Infective Diseases , 2009 .

[25]  E. Topol,et al.  Protein carbamylation links inflammation, smoking, uremia and atherogenesis , 2007, Nature Medicine.

[26]  M. McCarthy,et al.  Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice , 2006, Proceedings of the National Academy of Sciences.

[27]  A. Evans,et al.  Trimethylamine: metabolic, pharmacokinetic and safety aspects. , 2005, Current drug metabolism.

[28]  Kathryn M. Camp,et al.  Biochemical and clinical aspects of the human flavin-containing monooxygenase form 3 (FMO3) related to trimethylaminuria. , 2003, Current drug metabolism.

[29]  S. Sandhu,et al.  Aerobic degradation of choline by Proteus mirabilis: enzymatic requirements and pathway. , 1986, Canadian journal of microbiology.

[30]  G. Gottschalk,et al.  Degradation of various amine compounds by mesophilic clostridia , 1986, Archives of Microbiology.

[31]  P. Barlow,et al.  The effects of inhibiting choline dehydrogenase on choline metabolism in mice. , 1985, Biochemical pharmacology.

[32]  M. Cafiero [Choline dehydrogenase of the liver]. , 1951, Bollettino della Societa italiana di biologia sperimentale.

[33]  R. Renshaw,et al.  The Phosphorus Analogs and Homologs of Choline and Betaine. Onium Compounds. XVII , 1938 .

[34]  F. Bushman,et al.  Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis , 2013, Nature Medicine.

[35]  Jonathan D. Smith,et al.  Quantitative assay for mouse atherosclerosis in the aortic root. , 2006, Methods in molecular medicine.

[36]  M. S. Zedeck,et al.  Histochemical findings suggesting that methylazoxymethanol, a liver and kidney carcinogen, is a substrate for hepatic and renal choline dehydrogenase. , 1981, Carcinogenesis.