Constructing multifunctional solid electrolyte interface via in-situ polymerization for dendrite-free and low N/P ratio lithium metal batteries

[1]  Jiaqi Huang,et al.  The reduction of interfacial transfer barrier of Li ions enabled by inorganics-rich solid-electrolyte interphase , 2020, Energy Storage Materials.

[2]  Shuang Li,et al.  Revealing the Rapid Electrocatalytic Behavior of Ultrafine Amorphous Defective Nb2O5-x Nanocluster towards Superior Li-S Performance. , 2020, ACS nano.

[3]  Rui Zhang,et al.  A Diffusion-Reaction Competition Mechanism to Tailor Lithium Deposition. , 2020, Angewandte Chemie.

[4]  Xingxing Gu,et al.  Stabilizing lithium metal anode by octaphenyl polyoxyethylene-lithium complexation , 2020, Nature Communications.

[5]  Qian Sun,et al.  3D Vertically Aligned Li Metal Anodes with Ultrahigh Cycling Currents and Capacities of 10 mA cm−2/20 mAh cm−2 Realized by Selective Nucleation within Microchannel Walls , 2020, Advanced Energy Materials.

[6]  Yongfu Tang,et al.  Lithium whisker growth and stress generation in an in situ atomic force microscope–environmental transmission electron microscope set-up , 2020, Nature Nanotechnology.

[7]  G. Cui,et al.  A Temperature‐Responsive Electrolyte Endowing Superior Safety Characteristic of Lithium Metal Batteries , 2019, Advanced Energy Materials.

[8]  Shanhai Ge,et al.  Asymmetric Temperature Modulation for Extreme Fast Charging of Lithium-Ion Batteries , 2019 .

[9]  Ya‐Xia Yin,et al.  Self-Healable Solid Polymeric Electrolytes for Stable and Flexible Lithium Metal Batteries. , 2019, Angewandte Chemie.

[10]  Lin Liu,et al.  Tuning wettability of molten lithium via a chemical strategy for lithium metal anodes , 2019, Nature Communications.

[11]  Ji‐Guang Zhang,et al.  Origin of lithium whisker formation and growth under stress , 2019, Nature Nanotechnology.

[12]  Hong‐Jie Peng,et al.  A Supramolecular Electrolyte for Lithium‐Metal Batteries , 2019, Batteries & Supercaps.

[13]  Jun Lu,et al.  Cross-linked beta alumina nanowires with compact gel polymer electrolyte coating for ultra-stable sodium metal battery , 2019, Nature Communications.

[14]  Hongkyung Lee,et al.  Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization , 2019, Nature Energy.

[15]  Ji‐Guang Zhang,et al.  Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions , 2019, Nature Nanotechnology.

[16]  Jun Lu,et al.  Electrochemically primed functional redox mediator generator from the decomposition of solid state electrolyte , 2019, Nature Communications.

[17]  A. Yu,et al.  Synergistic Engineering of Defects and Architecture in Binary Metal Chalcogenide toward Fast and Reliable Lithium–Sulfur Batteries , 2019, Advanced Energy Materials.

[18]  Donghai Wang,et al.  Polymer–inorganic solid–electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions , 2019, Nature Materials.

[19]  Venkat R. Subramanian,et al.  Pathways for practical high-energy long-cycling lithium metal batteries , 2019, Nature Energy.

[20]  Jiaqi Huang,et al.  Regulating Anions in the Solvation Sheath of Lithium Ions for Stable Lithium Metal Batteries , 2019, ACS Energy Letters.

[21]  Xiulin Fan,et al.  Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery , 2018, Science Advances.

[22]  Yitai Qian,et al.  The Dual‐Play of 3D Conductive Scaffold Embedded with Co, N Codoped Hollow Polyhedra toward High‐Performance Li–S Full Cell , 2018, Advanced Energy Materials.

[23]  Jun Lu,et al.  A Lithium–Sulfur Battery using a 2D Current Collector Architecture with a Large‐Sized Sulfur Host Operated under High Areal Loading and Low E/S Ratio , 2018, Advanced materials.

[24]  Wen Lei,et al.  Stringed “tube on cube” nanohybrids as compact cathode matrix for high-loading and lean-electrolyte lithium–sulfur batteries , 2018 .

[25]  Chong Yan,et al.  Lithium Nitrate Solvation Chemistry in Carbonate Electrolyte Sustains High-Voltage Lithium Metal Batteries. , 2018, Angewandte Chemie.

[26]  Hongkyung Lee,et al.  High-Efficiency Lithium Metal Batteries with Fire-Retardant Electrolytes , 2018, Joule.

[27]  Hongkyung Lee,et al.  A Localized High-Concentration Electrolyte with Optimized Solvents and Lithium Difluoro(oxalate)borate Additive for Stable Lithium Metal Batteries , 2018, ACS Energy Letters.

[28]  Ji‐Guang Zhang,et al.  Stable cycling of high-voltage lithium metal batteries in ether electrolytes , 2018, Nature Energy.

[29]  K. Roszek,et al.  Novel biocatalytic systems for maintaining the nucleotide balance based on adenylate kinase immobilized on carbon nanostructures. , 2018, Materials science & engineering. C, Materials for biological applications.

[30]  Jiaqi Huang,et al.  Dual‐Layered Film Protected Lithium Metal Anode to Enable Dendrite‐Free Lithium Deposition , 2018, Advanced materials.

[31]  G. Cui,et al.  Self-Stabilized Solid Electrolyte Interface on a Host-Free Li-Metal Anode toward High Areal Capacity and Rate Utilization , 2018 .

[32]  Yuyan Shao,et al.  Addressing Passivation in Lithium–Sulfur Battery Under Lean Electrolyte Condition , 2018 .

[33]  Seong H. Kim,et al.  Self-Formed Hybrid Interphase Layer on Lithium Metal for High-Performance Lithium-Sulfur Batteries. , 2018, ACS nano.

[34]  Hong‐Jie Peng,et al.  Artificial Soft–Rigid Protective Layer for Dendrite‐Free Lithium Metal Anode , 2018 .

[35]  N. Wu,et al.  High Polarity Poly(vinylidene difluoride) Thin Coating for Dendrite‐Free and High‐Performance Lithium Metal Anodes , 2018 .

[36]  W. Kwiatek,et al.  Molecular structure of human aortic valve by µSR- FTIR microscopy , 2017 .

[37]  A. Yu,et al.  Tuning Shell Numbers of Transition Metal Oxide Hollow Microspheres toward Durable and Superior Lithium Storage. , 2017, ACS nano.

[38]  Yi Cui,et al.  Strong texturing of lithium metal in batteries , 2017, Proceedings of the National Academy of Sciences.

[39]  T. Mallouk,et al.  Interfacial Chemistry Regulation via a Skin-Grafting Strategy Enables High-Performance Lithium-Metal Batteries. , 2017, Journal of the American Chemical Society.

[40]  Xin-Bing Cheng,et al.  Nanodiamonds suppress the growth of lithium dendrites , 2017, Nature Communications.

[41]  Rui Zhang,et al.  Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. , 2017, Chemical reviews.

[42]  Tingzheng Hou,et al.  Towards stable lithium-sulfur batteries: Mechanistic insights into electrolyte decomposition on lithium metal anode , 2017 .

[43]  G. Cui,et al.  Poly(ethyl α-cyanoacrylate)-Based Artificial Solid Electrolyte Interphase Layer for Enhanced Interface Stability of Li Metal Anodes , 2017 .

[44]  J. Chai,et al.  Facile and Reliable in Situ Polymerization of Poly(Ethyl Cyanoacrylate)-Based Polymer Electrolytes toward Flexible Lithium Batteries. , 2017, ACS applied materials & interfaces.

[45]  I. Zhitomirsky,et al.  Enhanced capacitive performance of MnO2- multiwalled carbon nanotube electrodes, prepared using lauryl gallate dispersant , 2016 .

[46]  I. Zhitomirsky,et al.  Electrophoretic deposition of tannic acid-polypyrrolidone films and composites. , 2016, Journal of colloid and interface science.

[47]  I. Zhitomirsky,et al.  Electrophoretic Deposition of Polyetheretherketone Composites, Containing Huntite and Alumina Platelets , 2015 .

[48]  R. Świsłocka Spectroscopic (FT-IR, FT-Raman, UV absorption, 1H and 13C NMR) and theoretical (in B3LYP/6-311++G** level) studies on alkali metal salts of caffeic acid. , 2013, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[49]  Myung-Hyun Ryou,et al.  Excellent Cycle Life of Lithium‐Metal Anodes in Lithium‐Ion Batteries with Mussel‐Inspired Polydopamine‐Coated Separators , 2012 .

[50]  N. Sathyamurthy,et al.  A theoretical investigation on the effect of π–π stacking interaction on 1H isotropic chemical shielding in certain homo- and hetero-nuclear aromatic systems , 2012, Theoretical Chemistry Accounts.

[51]  Haeshin Lee,et al.  Mussel-Inspired Surface Chemistry for Multifunctional Coatings , 2007, Science.

[52]  N. Amrhein,et al.  Caffeic acid and glycerol are constituents of the suberin layers in green cotton fibres , 1993, Planta.

[53]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[54]  M. Gouterman,et al.  Effect of Hydrogen Bonding on the Near Ultraviolet Absorption of Naphthol , 1957 .