Single-Step Selective Oxidation of Methane by Iron-Oxo Species in the Metal–Organic Framework MFU-4l

[1]  I. Zilberberg,et al.  Extremely Low Barrier Activation of Methane on Spin-Polarized Ferryl Ion [Feo]2+ at the Four-Membered Ring of Zeolite , 2022, SSRN Electronic Journal.

[2]  H. Kulik,et al.  Using Computational Chemistry To Reveal Nature’s Blueprints for Single-Site Catalysis of C–H Activation , 2022, ACS Catalysis.

[3]  H. Kulik,et al.  New Strategies for Direct Methane-to-Methanol Conversion from Active Learning Exploration of 16 Million Catalysts , 2022, JACS Au.

[4]  W. Schöllkopf,et al.  Gas‐Phase Mechanism of O.−/Ni2+‐Mediated Methane Conversion to Formaldehyde , 2022, Angewandte Chemie.

[5]  Justin M. Notestein,et al.  Exploring mechanistic routes for light alkane oxidation with an iron-triazolate metal-organic framework. , 2022, Physical chemistry chemical physics : PCCP.

[6]  Nicholas R. Jernigan,et al.  Kinetic Probes of the Origin of Activity in MOF-Based C–H Oxidation Catalysts , 2021, ACS Catalysis.

[7]  Chenghua Sun,et al.  Mechanistic Insights into Direct Methane Oxidation to Methanol on Single-Atom Transition-Metal-Modified Graphyne , 2021, ACS Applied Nano Materials.

[8]  Andrew S. Rosen,et al.  Fine-Tuning a Robust Metal-Organic Framework toward Enhanced Clean Energy Gas Storage. , 2021, Journal of the American Chemical Society.

[9]  B. Gates,et al.  Beyond Radical Rebound: Methane Oxidation to Methanol Catalyzed by Iron Species in Metal-Organic Framework Nodes. , 2021, Journal of the American Chemical Society.

[10]  B. Sels,et al.  Cage effects control the mechanism of methane hydroxylation in zeolites , 2021, Science.

[11]  O. Farha,et al.  Insights into Catalytic Hydrolysis of Organophosphonates at M-OH Sites of Azolate-Based Metal Organic Frameworks. , 2021, Journal of the American Chemical Society.

[12]  D. Pantazis,et al.  Structure–Spectroscopy Correlations for Intermediate Q of Soluble Methane Monooxygenase: Insights from QM/MM Calculations , 2021, Journal of the American Chemical Society.

[13]  B. Sels,et al.  Coordination and activation of nitrous oxide by iron zeolites , 2021, Nature Catalysis.

[14]  H. Kulik,et al.  Molecular DFT+U: A Transferable, Low-Cost Approach to Eliminate Delocalization Error. , 2021, The journal of physical chemistry letters.

[15]  F. Passarini,et al.  Biogas to Syngas through the Combined Steam/Dry Reforming Process: An Environmental Impact Assessment , 2021, Energy & Fuels.

[16]  B. Ipek,et al.  A potential catalyst for continuous methane partial oxidation to methanol using N2O: Cu-SSZ-39. , 2021, Chemical communications.

[17]  Connie C. Lu,et al.  Influence of First and Second Coordination Environment on Structural Fe(II) Sites in MIL-101 for C–H Bond Activation in Methane , 2020, ACS Catalysis.

[18]  David Fairen-Jimenez,et al.  Materials Informatics with PoreBlazer v4.0 and the CSD MOF Database , 2020, Chemistry of Materials.

[19]  J. Harvey,et al.  Energetics of non-heme iron reactivity: can ab initio calculations provide the right answer? , 2020, Physical chemistry chemical physics : PCCP.

[20]  H. Kulik,et al.  Why Conventional Design Rules for C–H Activation Fail for Open-Shell Transition-Metal Catalysts , 2020, ACS Catalysis.

[21]  N. Lehnert,et al.  Iron and manganese oxo complexes, oxo wall and beyond , 2020, Nature Reviews Chemistry.

[22]  R. Snurr,et al.  Exploring the Tunability of Trimetallic MOF Nodes for Partial Oxidation of Methane to Methanol. , 2020, ACS applied materials & interfaces.

[23]  C. Wade,et al.  Insights into CO2 Adsorption in M–OH Functionalized MOFs , 2020 .

[24]  Moran Feller,et al.  Chemical reactivity under nanoconfinement , 2020, Nature Nanotechnology.

[25]  Andrew S. Rosen,et al.  High-Valent Metal-Oxo Species at the Nodes of Metal-Triazolate Frameworks: The Effects of Ligand Exchange and Two-State Reactivity for C-H Bond Activation. , 2020, Angewandte Chemie.

[26]  R. Snurr,et al.  DFT Study on the Catalytic Activity of ALD-Grown Diiron Oxide Nanoclusters for Partial Oxidation of Methane to Methanol. , 2020, The journal of physical chemistry. A.

[27]  Justin M. Notestein,et al.  Computational Predictions and Experimental Validation of Alkane Oxidative Dehydrogenation by Fe2M MOF Nodes , 2020, ACS Catalysis.

[28]  Michelle L. Beauvais,et al.  Structure, Dynamics, and Reactivity for Light Alkane Oxidation of Fe(II) Sites Situated in the Nodes of a Metal-Organic Framework. , 2019, Journal of the American Chemical Society.

[29]  H. Kulik,et al.  Impact of Approximate DFT Density Delocalization Error on Potential Energy Surfaces in Transition Metal Chemistry. , 2019, Journal of chemical theory and computation.

[30]  J. Gascón,et al.  Breaking Linear Scaling Relationships with Secondary Interactions in Confined Space: A Case Study of Methane Oxidation by Fe/ZSM-5 Zeolite , 2019, ACS Catalysis.

[31]  Dehui Deng,et al.  Direct Methane Conversion under Mild Condition by Thermo-, Electro-, or Photocatalysis , 2019, Chem.

[32]  D. Volkmer,et al.  Organometallic MFU-4l(arge) Metal–Organic Frameworks , 2019, Organometallics.

[33]  Yoshihiro Shimoyama,et al.  Metal-Oxyl Species and Their Possible Roles in Chemical Oxidations. , 2019, Inorganic chemistry.

[34]  J. Harvey,et al.  Ab Initio Calculations for Spin-Gaps of Non-Heme Iron Complexes. , 2019, Journal of chemical theory and computation.

[35]  Randall Q. Snurr,et al.  Identifying promising metal–organic frameworks for heterogeneous catalysis via high‐throughput periodic density functional theory , 2019, J. Comput. Chem..

[36]  B. Martín‐Matute,et al.  Metal-Organic Frameworks as Catalysts for Organic Synthesis: A Critical Perspective. , 2019, Journal of the American Chemical Society.

[37]  Gourab Mukherjee,et al.  Interplay Between Steric and Electronic Effects: A Joint Spectroscopy and Computational Study of Nonheme Iron(IV)-Oxo Complexes. , 2019, Chemistry.

[38]  Andrew S. Rosen,et al.  Structure–Activity Relationships That Identify Metal–Organic Framework Catalysts for Methane Activation , 2019, ACS Catalysis.

[39]  Connie C. Lu,et al.  Quantum Chemical Characterization of Structural Single Fe(II) Sites in MIL-Type Metal–Organic Frameworks for the Oxidation of Methane to Methanol and Ethane to Ethanol , 2019, ACS Catalysis.

[40]  J. Harvey,et al.  Limits of Coupled-Cluster Calculations for Non-Heme Iron Complexes. , 2019, Journal of chemical theory and computation.

[41]  Christopher H. Hendon,et al.  A Structural Mimic of Carbonic Anhydrase in a Metal-Organic Framework , 2018, Chem.

[42]  P. Serna,et al.  Viewpoint on the Partial Oxidation of Methane to Methanol Using Cu- and Fe-Exchanged Zeolites , 2018, ACS Catalysis.

[43]  G. Davies,et al.  Bracing copper for the catalytic oxidation of C–H bonds , 2018, Nature Catalysis.

[44]  J. Gascón,et al.  Mechanistic Complexity of Methane Oxidation with H2O2 by Single-Site Fe/ZSM-5 Catalyst , 2018, ACS catalysis.

[45]  J. Nørskov,et al.  Direct Methane to Methanol: The Selectivity–Conversion Limit and Design Strategies , 2018, ACS Catalysis.

[46]  J. Gascón,et al.  Isolated Fe Sites in Metal Organic Frameworks Catalyze the Direct Conversion of Methane to Methanol , 2018 .

[47]  Terry Z. H. Gani,et al.  Understanding and Breaking Scaling Relations in Single-Site Catalysis: Methane to Methanol Conversion by FeIV═O , 2018 .

[48]  Jeroen A van Bokhoven,et al.  The Direct Catalytic Oxidation of Methane to Methanol-A Critical Assessment. , 2017, Angewandte Chemie.

[49]  C. Janiak,et al.  MOF catalysts in biomass upgrading towards value-added fine chemicals , 2017 .

[50]  Michael Walter,et al.  The atomic simulation environment-a Python library for working with atoms. , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[51]  D. Palagin,et al.  Selective anaerobic oxidation of methane enables direct synthesis of methanol , 2017, Science.

[52]  M. Probst,et al.  Ethylene Epoxidation with Nitrous Oxide over Fe-BTC Metal-Organic Frameworks: A DFT Study. , 2016, Chemphyschem : a European journal of chemical physics and physical chemistry.

[53]  S. Faramawy,et al.  Natural gas origin, composition, and processing: A review , 2016 .

[54]  K. Ray,et al.  Oxidation Reactions with Bioinspired Mononuclear Non-Heme Metal-Oxo Complexes. , 2016, Angewandte Chemie.

[55]  J. Gascón,et al.  Strategies for the direct catalytic valorization of methane using heterogeneous catalysis:challenges and opportunities , 2016 .

[56]  K. Reuter,et al.  Elucidating Lewis acidity of metal sites in MFU-4l metal-organic frameworks: N2O and CO2 adsorption in MFU-4l, CuI-MFU-4l and Li-MFU-4l , 2015 .

[57]  K. Reuter,et al.  Postsynthetic Metal and Ligand Exchange in MFU-4l: A Screening Approach toward Functional Metal-Organic Frameworks Comprising Single-Site Active Centers. , 2015, Chemistry.

[58]  D. Truhlar,et al.  Mechanism of Oxidation of Ethane to Ethanol at Iron(IV)-Oxo Sites in Magnesium-Diluted Fe2(dobdc). , 2015, Journal of the American Chemical Society.

[59]  Zhuqi Chen,et al.  The reactivity of the active metal oxo and hydroxo intermediates and their implications in oxidations. , 2015, Chemical Society reviews.

[60]  F. Pfaff,et al.  Status of reactive non-heme metal-oxygen intermediates in chemical and enzymatic reactions. , 2014, Journal of the American Chemical Society.

[61]  Craig M. Brown,et al.  Oxidation of ethane to ethanol by N2O in a metal-organic framework with coordinatively unsaturated iron(II) sites. , 2014, Nature chemistry.

[62]  Kurt Stokbro,et al.  Improved initial guess for minimum energy path calculations. , 2014, The Journal of chemical physics.

[63]  Maciej Grzywa,et al.  Scorpionate-type coordination in MFU-4l metal-organic frameworks: small-molecule binding and activation upon the thermally activated formation of open metal sites. , 2014, Angewandte Chemie.

[64]  G. Henkelman,et al.  Solid-state dimer method for calculating solid-solid phase transitions. , 2014, The Journal of chemical physics.

[65]  S. Grimme,et al.  DFT-D3 Study of Some Molecular Crystals , 2014 .

[66]  M. Hirscher,et al.  MFU‐4 – A Metal‐Organic Framework for Highly Effective H2/D2 Separation , 2013, Advanced materials.

[67]  K. Ray,et al.  The biology and chemistry of high-valent iron–oxo and iron–nitrido complexes , 2012, Nature Communications.

[68]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[69]  M. Hirscher,et al.  Elucidating gating effects for hydrogen sorption in MFU-4-type triazolate-based metal-organic frameworks featuring different pore sizes. , 2011, Chemistry.

[70]  Hui Chen,et al.  Exchange-Enhanced H-Abstraction Reactivity of High-Valent Nonheme Iron(IV)-Oxo from Coupled Cluster and Density Functional Theories , 2010 .

[71]  S. Shaik,et al.  The fundamental role of exchange-enhanced reactivity in C-H activation by S=2 oxo iron(IV) complexes. , 2010, Angewandte Chemie.

[72]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[73]  L. Que,et al.  Million-fold activation of the [Fe2(μ-O)2] diamond core for C-H bond cleavage , 2010, Nature chemistry.

[74]  K. Theopold,et al.  C-H bond activations by metal oxo compounds. , 2010, Chemical reviews.

[75]  W. Tolman Binding and activation of N2O at transition-metal centers: recent mechanistic insights. , 2010, Angewandte Chemie.

[76]  Nadine Unger,et al.  Improved Attribution of Climate Forcing to Emissions , 2009, Science.

[77]  G. Henkelman,et al.  Optimization methods for finding minimum energy paths. , 2008, The Journal of chemical physics.

[78]  Paul Sherwood,et al.  Superlinearly converging dimer method for transition state search. , 2008, The Journal of chemical physics.

[79]  A. Bell,et al.  Efficient methods for finding transition states in chemical reactions: comparison of improved dimer method and partitioned rational function optimization method. , 2005, The Journal of chemical physics.

[80]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[81]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[82]  G. Henkelman,et al.  Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points , 2000 .

[83]  G. Henkelman,et al.  A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives , 1999 .

[84]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[85]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[86]  Adrian P. Sutton,et al.  Effect of Mott-Hubbard correlations on the electronic structure and structural stability of uranium dioxide , 1997 .

[87]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[88]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.