Variational Integrators

Introduction 12 Geometric numerical integrators are numerical meth13 ods that preserve the geometric structure of a continu14 ous dynamical system (see, e.g., [8, 11], and references 15 therein), and variational integrators provide a system16 atic framework for constructing numerical integrators 17 that preserve the symplectic structure and momen18 tum, of Lagrangian and Hamiltonian systems, while 19 exhibiting good energy stability for exponentially long 20 times. 21 In many problems, the underlying geometric struc22 ture affects the qualitative behavior of solutions, and 23 as such, numerical methods that preserve the geometry 24 of a problem typically yield more qualitatively accu25 rate simulations. This qualitative property of geometric 26 integrators can be better understood by viewing a 27 numerical method as a discrete dynamical system that 28 approximates the flow map of the continuous system 29 (see, e.g., [1, 21]), as opposed to the traditional view 30 that a numerical method approximates individual tra31 jectories. In particular, this viewpoint allows questions 32 about long-time stability to be addressed, which would 33 otherwise be difficult to answer. 34

[1]  Roger Fletcher,et al.  A Rapidly Convergent Descent Method for Minimization , 1963, Comput. J..

[2]  C. G. Broyden The Convergence of a Class of Double-rank Minimization Algorithms 2. The New Algorithm , 1970 .

[3]  D. Shanno Conditioning of Quasi-Newton Methods for Function Minimization , 1970 .

[4]  J. J. Moré,et al.  Quasi-Newton Methods, Motivation and Theory , 1974 .

[5]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[6]  Yifa Tang,et al.  Formal energy of a symplectic scheme for hamiltonian systems and its applications (I) , 1994 .

[7]  E. Hairer Backward analysis of numerical integrators and symplectic methods , 1994 .

[8]  G. Benettin,et al.  On the Hamiltonian interpolation of near-to-the identity symplectic mappings with application to symplectic integration algorithms , 1994 .

[9]  Ernst Hairer,et al.  The life-span of backward error analysis for numerical integrators , 1997 .

[10]  J. Marsden,et al.  Multisymplectic Geometry, Variational Integrators, and Nonlinear PDEs , 1998, math/9807080.

[11]  S. Reich Backward Error Analysis for Numerical Integrators , 1999 .

[12]  Jerrold E. Marsden,et al.  Variational Methods, Multisymplectic Geometry and Continuum Mechanics , 2001 .

[13]  Philip E. Gill,et al.  Reduced-Hessian Quasi-Newton Methods for Unconstrained Optimization , 2001, SIAM J. Optim..

[14]  J. Marsden,et al.  Discrete mechanics and variational integrators , 2001, Acta Numerica.

[15]  Jorge Cortes,et al.  Non-holonomic integrators , 2001 .

[16]  J. Marsden,et al.  Asynchronous Variational Integrators , 2003 .

[17]  Jerrold E. Marsden,et al.  Nonsmooth Lagrangian Mechanics and Variational Collision Integrators , 2003, SIAM J. Appl. Dyn. Syst..

[18]  E. Hairer,et al.  Geometric numerical integration illustrated by the Störmer–Verlet method , 2003, Acta Numerica.

[19]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[20]  Matthew West,et al.  Approximate momentum conservation for spatial semidiscretizations of semilinear wave equations , 2004, Numerische Mathematik.

[21]  N. McClamroch,et al.  Lie group variational integrators for the full body problem , 2005, math/0508365.

[22]  Ya-Xiang Yuan,et al.  A subspace implementation of quasi-Newton trust region methods for unconstrained optimization , 2006, Numerische Mathematik.

[23]  E. Hairer,et al.  Simulating Hamiltonian dynamics , 2006, Math. Comput..

[24]  Taeyoung Lee,et al.  Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/nme.2603 Lagrangian mechanics and variational integrators on two-spheres , 2022 .

[25]  J. Marsden,et al.  Variational integrators for constrained dynamical systems , 2008 .

[26]  H. Owhadi,et al.  Stochastic Variational Integrators , 2007, 0708.2187.

[27]  Melvin Leok,et al.  Discrete Hamiltonian Variational Integrators , 2010, 1001.1408.

[28]  Tomoki Ohsawa,et al.  Variational and Geometric Structures of Discrete Dirac Mechanics , 2008, Found. Comput. Math..