The Cauchy-Dirichlet problem for the FENE dumbbell model of polymeric fluids

The FENE dumbbell model consists of the incompressible Navier-Stokes equation and the Fokker-Planck equation for the polymer distribution. In such a model, the polymer elongation cannot exceed a limit $\sqrt{b}$, yielding all interesting features near the boundary. In this paper we establish the local well-posedness for the FENE dumbbell model under a class of Dirichlet-type boundary conditions dictated by the parameter $b$. As a result, for each $b>0$ we identify a sharp boundary requirement for the underlying density distribution, while the sharpness follows from the existence result for each specification of the boundary behavior. It is shown that the probability density governed by the Fokker-Planck equation approaches zero near boundary, necessarily faster than the distance function $d$ for $b>2$, faster than $d|ln d|$ for $b=2$, and as fast as $d^{b/2}$ for $0<b<2$. Moreover, the sharp boundary requirement for $b\geq 2$ is also sufficient for the distribution to remain a probability density.

[1]  J. Saut,et al.  Global existence and one-dimensional nonlinear stability of shearing motions of viscoelastic fluids of Oldroyd type , 1990 .

[2]  Curtiss,et al.  Dynamics of Polymeric Liquids , .

[3]  Qiang Du,et al.  FENE Dumbbell Model and Its Several Linear and Nonlinear Closure Approximations , 2005, Multiscale Model. Simul..

[4]  Lars-Erik Persson,et al.  Weighted Inequalities of Hardy Type , 2003 .

[5]  Benjamin Jourdain,et al.  Existence of solution for a micro–macro model of polymeric fluid: the FENE model , 2004 .

[6]  Ping Zhang,et al.  On a micro‐macro model for polymeric fluids near equilibrium , 2007 .

[7]  Cédric Chauvière,et al.  Simulation of dilute polymer solutions using a Fokker–Planck equation , 2004 .

[8]  Charles Fefferman,et al.  Regularity of Coupled Two-Dimensional Nonlinear Fokker-Planck and Navier-Stokes Systems , 2006, math/0605245.

[9]  Pierre-Louis Lions,et al.  Global existence of weak solutions to some micro-macro models , 2007 .

[10]  Jean-Yves Chemin,et al.  About Lifespan of Regular Solutions of Equations Related to Viscoelastic Fluids , 2001, SIAM J. Math. Anal..

[11]  Yi Zhou,et al.  Global Existence of Classical Solutions for the Two-Dimensional Oldroyd Model via the Incompressible Limit , 2005, SIAM J. Math. Anal..

[12]  Pingwen Zhang,et al.  Well-Posedness for the Dumbbell Model of Polymeric Fluids , 2004 .

[13]  Ping Zhang,et al.  On hydrodynamics of viscoelastic fluids , 2005 .

[14]  Guillén Fernández-Cara,et al.  GLOBAL EXISTENCE OF WEAK SOLUTIONS TO THE FENE DUMBBELL MODEL OF POLYMERIC FLOWS , 2012 .

[15]  Pingwen Zhang,et al.  Local Existence for the FENE-Dumbbell Model of Polymeric Fluids , 2004 .

[16]  Ping Zhang,et al.  On the Global Existence of Smooth Solution to the 2-D FENE Dumbbell Model , 2007 .

[17]  Laurent Chupin,et al.  The FENE Model for Viscoelastic Thin Film Flows , 2009 .

[18]  S. Edwards,et al.  The Theory of Polymer Dynamics , 1986 .

[19]  J. Barrett,et al.  Existence and equilibration of global weak solutions to Hookean-type bead-spring chain models for dilute polymers , 2010, 1008.3052.

[20]  Hans Christian Öttinger,et al.  Stochastic Processes in Polymeric Fluids , 1996 .

[21]  P. Lions,et al.  GLOBAL SOLUTIONS FOR SOME OLDROYD MODELS OF NON-NEWTONIAN FLOWS , 2000 .

[22]  Akira Ogawa,et al.  Vorticity and Incompressible Flow. Cambridge Texts in Applied Mathematics , 2002 .

[23]  Ping Zhang,et al.  The FENE dumbbell model near equilibrium , 2008 .

[24]  Nader Masmoudi,et al.  Global Well-Posedness for a Smoluchowski Equation Coupled with Navier-Stokes Equations in 2D , 2008 .

[25]  E. Süli,et al.  Existence of global weak solutions for some polymeric flow models , 2005 .

[26]  Hailiang Liu,et al.  Boundary Conditions for the Microscopic FENE Models , 2008, SIAM J. Appl. Math..

[27]  J. Saut,et al.  Existence results for the flow of viscoelastic fluids with a differential constitutive law , 1990 .

[28]  Robert C. Armstrong,et al.  Dynamics of polymeric liquids. Volume 2: Kinetic Theory By R. Ryron Bird, Charles F. Curtis, Robert C. Armstrong, and Ole Hassager, John Wiley & Sons, Inc., New York, 2nd Ed., 1987, 437 + xxi pp. , 1989 .

[29]  Yi Zhou,et al.  Global Solutions for Incompressible Viscoelastic Fluids , 2008, 0901.3658.

[30]  Benjamin Jourdain,et al.  Long-Time Asymptotics of a Multiscale Model for Polymeric Fluid Flows , 2006 .

[31]  Pingwen Zhang,et al.  Global existence of weak solutions to the regularized Hookean dumbbell model , 2008 .

[32]  Jaemin Shin,et al.  GLOBAL WELL-POSEDNESS FOR THE MICROSCOPIC FENE MODEL WITH A SHARP BOUNDARY CONDITION , 2009, 0905.1142.

[33]  Hailiang Liu,et al.  Kinetic models for polymers with inertial effects , 2009, Networks Heterog. Media.

[34]  Ping Zhang,et al.  Global well-posedness for 2D polymeric fluid models and growth estimate , 2008 .

[35]  Endre Süli,et al.  Spectral Galerkin approximation of Fokker-Planck equations with unbounded drift , 2009 .

[36]  Cédric Chauvière,et al.  Simulation of complex viscoelastic flows using the Fokker–Planck equation: 3D FENE model , 2004 .

[37]  T N Phillips,et al.  Contemporary Topics in Computational Rheology , 2002 .

[38]  Hailiang Liu AN ENTROPY SATISFYING FINITE VOLUME METHOD FOR THE FOKKER-PLANCK EQUATION OF FENE DUMBBELL MODEL , 2010 .

[39]  John W. Barrett,et al.  Existence of Global Weak Solutions to Some Regularized Kinetic Models for Dilute Polymers , 2007, Multiscale Model. Simul..

[40]  Pierre Degond,et al.  Viscoelastic Fluid Models Derived from Kinetic Equations for Polymers , 2002, SIAM J. Appl. Math..

[41]  Anton Arnold,et al.  Refined long-time asymptotics for some polymeric fluid flow models , 2010 .

[42]  Michael Renardy,et al.  An existence theorem for model equations resulting from kinetic theories of polymer solutions , 1991 .

[43]  Andrew J. Majda,et al.  Vorticity and Incompressible Flow: Index , 2001 .

[44]  Ping Zhang,et al.  L2 Decay of Solutions to a Micro-Macro Model for Polymeric Fluids Near Equilibrium , 2009, SIAM J. Math. Anal..

[45]  Benjamin Jourdain,et al.  MATHEMATICAL ANALYSIS OF A STOCHASTIC DIFFERENTIAL EQUATION ARISING IN THE MICRO-MACRO MODELLING OF POLYMERIC FLUIDS , 2003 .

[46]  A. Kufner Weighted Sobolev Spaces , 1985 .

[47]  Maria E. Schonbek,et al.  Existence and Decay of Polymeric Flows , 2009, SIAM J. Math. Anal..

[48]  Nader Masmoudi,et al.  Well‐posedness for the FENE dumbbell model of polymeric flows , 2008 .

[49]  E. Süli,et al.  EXISTENCE OF GLOBAL WEAK SOLUTIONS TO DUMBBELL MODELS FOR DILUTE POLYMERS WITH MICROSCOPIC CUT-OFF , 2008 .