Bifurcation analysis near a double eigenvalue of a model chemical reaction

In this paper we analyze the steady-state bifurcations from the trivial solution of the reaction-diffusion equations associated to a model chemical reaction, the so-called Brusselator. The present analysis concentrates on the case when the first bifurcation is from a double eigenvalue. The dependence of the bifurcation diagrams on various parameters and perturbations is analyzed. The results of reference [2] are invoked to show that further complications in the model would not lead to new behavior.