Novel anion-tuning supramolecular gels with dual-channel response: reversible sol-gel transition and color changes.

Two novel low-molecular-weight organogelators (LMOGs) 1 and 2 composed of an anthraquinone unit, a hydrazide group, and long alkyl chains were synthesized. They could form stable gels in wide tested solvents. Chloroalkanes and aromatic solvents tend to result in transparent gels, while alcohol and other solvents yield opaque gels. The FT-IR, PXRD, and (1)H NMR spectral studies revealed that hydrogen bonding and pi-pi interactions were the main driving forces for formation of the gels. Although the hydrazide unit and the anthraquinone group were connected by the sigma-bond, the chloroform gel of 1 could be changed into a red solution upon the addition of anion (F(-), AcO(-), and H(2)PO(4)(-)) due to the disruption of the intermolecular hydrogen-bondings. Moreover, the red color clearly faded at once and the solution regelated upon the addition of methanol. The results indicated that 1 and 2 as smart anion-responsive gel might provide the basis for the development of nonfluid systems for sensing anion with the naked eye.