Existence of KPP type fronts in space-time periodic shear flows and a study of minimal speeds based on variational principle

We prove the existence of reaction-diffusion traveling fronts in mean zero space-time periodic shear flows for nonnegative reactions including the classical KPP (Kolmogorov-Petrovsky-Piskunov) nonlinearity. For the KPP nonlinearity, the minimal front speed is characterized by a variational principle involving the principal eigenvalue of a space-time periodic parabolic operator. Analysis of the variational principle shows that adding a mean-zero space time periodic shear flow to an existing mean zero space-periodic shear flow leads to speed enhancement. Computation of KPP minimal speeds is performed based on the variational principle and a spectrally accurate discretization of the principal eigenvalue problem. It shows that the enhancement is monotone decreasing in temporal shear frequency, and that the total enhancement from pure reaction-diffusion obeys quadratic and linear laws at small and large shear amplitudes.

[1]  Jack Xin,et al.  Front Propagation in Heterogeneous Media , 2000, SIAM Rev..

[2]  J. Xin KPP Front Speeds in Random Shears and the Parabolic Anderson Problem , 2002 .

[3]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[4]  O. Ruchayskiy,et al.  Flame enhancement and quenching in fluid flows , 2002, physics/0212057.

[5]  George Papanicolaou,et al.  Reaction-diffusion fronts in periodically layered media , 1991 .

[6]  Andrew J. Majda,et al.  Large scale front dynamics for turbulent reaction-diffusion equations with separated velocity scales , 1994 .

[7]  G. M. Lieberman SECOND ORDER PARABOLIC DIFFERENTIAL EQUATIONS , 1996 .

[8]  Henri Berestycki,et al.  Travelling fronts in cylinders , 1992 .

[9]  Henri Berestycki,et al.  Front propagation in periodic excitable media , 2002 .

[10]  A. Stevens,et al.  Variational Principles for Propagation Speeds in Inhomogeneous Media , 2001, SIAM J. Appl. Math..

[11]  James Demmel,et al.  LAPACK Users' Guide, Third Edition , 1999, Software, Environments and Tools.

[12]  Victor Yakhot,et al.  Propagation Velocity of Premixed Turbulent Flames , 1988 .

[13]  V. Hutson,et al.  Estimates for the principal spectrum point for certain time-dependent parabolic operators , 2000 .

[14]  Kerstein,et al.  Propagation rate of growing interfaces in stirred fluids. , 1992, Physical review letters.

[15]  F. Williams,et al.  Theory of premixed-flame propagation in large-scale turbulence , 1979, Journal of Fluid Mechanics.

[16]  P. Hess,et al.  Periodic-Parabolic Boundary Value Problems and Positivity , 1991 .

[17]  F. M. Arscott,et al.  PERIODIC‐PARABOLIC BOUNDARY VALUE PROBLEMS AND POSITIVITY , 1992 .

[18]  Jack Xin,et al.  Existence of planar flame fronts in convective-diffusive periodic media , 1992 .

[19]  H. Weinberger,et al.  Maximum principles in differential equations , 1967 .

[20]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[21]  Adam M. Oberman,et al.  Bulk Burning Rate in¶Passive–Reactive Diffusion , 1999, math/9907132.

[22]  Jack Xin,et al.  Reaction-Diffusion Front Speeds in Spatially-Temporally Periodic Shear Flows , 2003, Multiscale Model. Simul..

[23]  A. Kiselev,et al.  Enhancement of the traveling front speeds in reaction-diffusion equations with advection , 2000, math/0002175.

[24]  X. Xin,et al.  Existence and stability of traveling waves in periodic media governed by a bistable nonlinearity , 1991 .

[25]  P. Ronney Some open issues in premixed turbulent combustion , 1995 .

[26]  Andrew J. Majda,et al.  Flame fronts in a turbulent combustion model with fractal velocity fields , 1998 .