Parallel machine scheduling with fuzzy processing times using a robust genetic algorithm and simulation

[1]  B. C. Brookes,et al.  Information Sciences , 2020, Cognitive Skills You Need for the 21st Century.

[2]  Jiadong Yang,et al.  A heuristic-based hybrid genetic-variable neighborhood search algorithm for task scheduling in heterogeneous multiprocessor system , 2011, Inf. Sci..

[3]  Tung-Kuan Liu,et al.  Design of robust-optimal output feedback controllers for linear uncertain systems using LMI-based approach and genetic algorithm , 2010, Inf. Sci..

[4]  Bernard Roy,et al.  Robustness in operational research and decision aiding: A multi-faceted issue , 2010, Eur. J. Oper. Res..

[5]  Wen-Chiung Lee,et al.  Some single-machine and m-machine flowshop scheduling problems with learning considerations , 2009, Inf. Sci..

[6]  Ali Husseinzadeh Kashan,et al.  A hybrid genetic heuristic for scheduling parallel batch processing machines with arbitrary job sizes , 2008, Comput. Oper. Res..

[7]  V. Selladurai,et al.  Non-identical parallel-machine scheduling using genetic algorithm and fuzzy logic approach , 2008 .

[8]  Reza Tavakkoli-Moghaddam,et al.  A fuzzy-mixed-integer goal programming model for a parallel-machine scheduling problem with sequence-dependent setup times and release dates , 2007 .

[9]  Wai Keung Wong,et al.  Optimisation of fault-tolerant fabric-cutting schedules using genetic algorithms and fuzzy set theory , 2007, Eur. J. Oper. Res..

[10]  K. Chau,et al.  Neural network and genetic programming for modelling coastal algal blooms , 2006 .

[11]  D. Petrovic,et al.  A fuzzy logic based production scheduling/rescheduling in the presence of uncertain disruptions , 2006, Fuzzy Sets Syst..

[12]  Chuntian Cheng,et al.  Using support vector machines for long-term discharge prediction , 2006 .

[13]  Nguyen Van Hop,et al.  A heuristic solution for fuzzy mixed-model line balancing problem , 2006, Eur. J. Oper. Res..

[14]  Roberto Musmanno,et al.  Robust scheduling of parallel machines with sequence-dependent set-up costs , 2005, Eur. J. Oper. Res..

[15]  Baoding Liu,et al.  Parallel machine scheduling models with fuzzy processing times , 2004, Inf. Sci..

[16]  Hyung Rim Choi,et al.  A hybrid genetic algorithm for the job shop scheduling problems , 2003, Comput. Ind. Eng..

[17]  Cheng Wu,et al.  Scheduling algorithm based on evolutionary computing in identical parallel machine production line , 2003 .

[18]  Baoding Liu,et al.  Theory and Practice of Uncertain Programming , 2003, Studies in Fuzziness and Soft Computing.

[19]  Ignacio E. Grossmann,et al.  Scheduling optimization under uncertainty - an alternative approach , 2003, Comput. Chem. Eng..

[20]  Chuntian Cheng,et al.  Combining a fuzzy optimal model with a genetic algorithm to solve multi-objective rainfall–runoff model calibration , 2002 .

[21]  Hong Zhou,et al.  The hybrid heuristic genetic algorithm for job shop scheduling , 2001 .

[22]  L. Vanegas,et al.  Application of new fuzzy-weighted average (NFWA) method to engineering design evaluation , 2001 .

[23]  Jing-Shing Yao,et al.  Ranking fuzzy numbers based on decomposition principle and signed distance , 2000, Fuzzy Sets Syst..

[24]  Wu Cheng,et al.  A genetic algorithm for minimizing the makespan in the case of scheduling identical parallel machines , 1999, Artif. Intell. Eng..

[25]  Baoding Liu,et al.  Dependent-chance programming with fuzzy decisions , 1999, IEEE Trans. Fuzzy Syst..

[26]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[27]  Baoding Liu,et al.  A note on chance constrained programming with fuzzy coefficients , 1998, Fuzzy Sets Syst..

[28]  Tzung-Pei Hong,et al.  LPT scheduling for fuzzy tasks , 1998, Fuzzy Sets Syst..

[29]  Baoding Liu,et al.  Chance constrained programming with fuzzy parameters , 1998, Fuzzy Sets Syst..

[30]  J. Buckley,et al.  Fuzzy genetic algorithm and applications , 1994 .

[31]  Gürsel A. Süer,et al.  Minimizing the number of tardy jobs in identical machine scheduling , 1993 .

[32]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[33]  Lawrence Davis,et al.  Genetic Algorithms and Communication Link Speed Design: Theoretical Considerations , 1987, ICGA.

[34]  Fred W. Glover,et al.  Future paths for integer programming and links to artificial intelligence , 1986, Comput. Oper. Res..

[35]  P. Vincke,et al.  Relational Systems of Preference with One or More Pseudo-Criteria: Some New Concepts and Results , 1984 .

[36]  Jan Karel Lenstra,et al.  Complexity of Scheduling under Precedence Constraints , 1978, Oper. Res..

[37]  Ravi Sethi,et al.  On the Complexity of Mean Flow Time Scheduling , 1977, Math. Oper. Res..

[38]  A. Kan Machine Scheduling Problems: Classification, Complexity and Computations , 1976 .

[39]  Chichang Jou,et al.  A genetic algorithm with sub-indexed partitioning genes and its application to production scheduling of parallel machines , 2005, Comput. Ind. Eng..

[40]  M. T. Sze,et al.  A genetic algorithm of determining cycle time for printed circuit board assembly lines , 2001, Eur. J. Oper. Res..

[41]  James J. Buckley,et al.  Evolutionary algorithm solution to fuzzy problems: Fuzzy linear programming , 2000, Fuzzy Sets Syst..

[42]  Maciej Hapke,et al.  Scheduling under Fuzziness , 2000 .

[43]  Baoding Liu,et al.  Uncertain Programming , 1999 .

[44]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[45]  Didier Dubois,et al.  Possibility Theory - An Approach to Computerized Processing of Uncertainty , 1988 .

[46]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[47]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[48]  M. Garey Johnson: computers and intractability: a guide to the theory of np- completeness (freeman , 1979 .