PVT properties prediction using hybrid genetic-neuro-fuzzy systems

Pressure-volume-temperature (PVT) properties are very important in reservoir engineering computations. There are many approaches for predicting various PVT properties based on empirical correlations, statistical regression and artificial neural networks (ANNs). Unfortunately, the developed correlations are often limited and global correlations are usually less accurate compared to local correlations. In this paper, a genetic-neuro-fuzzy inference system (GANFIS) is proposed for crude oil PVT properties prediction. Simulation experiments show that the proposed technique outperforms up-to-date methods.

[1]  M. A. Al-Marhoun,et al.  Evaluation of empirical correlations for bubblepoint oil formation volume factor , 1994 .

[2]  Vassilis Gaganis,et al.  A Novel Non-Iterative Method for the Prediction of the PVT Behavior of Reservoir Fluids , 1999 .

[3]  Amar Khoukhi,et al.  Data-Driven Multi-Stage Motion Planning of Parallel Kinematic Machines , 2010, IEEE Transactions on Control Systems Technology.

[4]  Adel M. Elsharkawy,et al.  Neural Network Model for Estimating The PVT Properties of Middle East Crude Oils , 1999 .

[5]  R. E. Abdel-Aal Abductive Networks: A New Modeling Tool for the Oil and Gas Industry , 2002 .

[6]  Marco Villa,et al.  Pressure-volume-temperature correlations for heavy and extra heavy oils , 1995 .

[7]  K. A. Fattah,et al.  Prediction of the PVT Data using Neural Network Computing Theory , 2003 .

[8]  A. C. Todd,et al.  Development of New Modified Black Oil Correlations for Malaysian Crudes , 1993 .

[9]  Marek Balazinski,et al.  A hierarchical neuro-fuzzy system to near optimal-time trajectory planning of redundant manipulators , 2008, Eng. Appl. Artif. Intell..

[10]  M. A. Al-Marhoun,et al.  Artificial Neural Networks Models for Predicting PVT Properties of Oil Field Brines , 2005 .

[11]  Reyadh A. Almehaideb Improved PVT correlations for UAE crude oils , 1997 .

[12]  A. A. Al-Shammasi Bubble Point Pressure and Oil Formation Volume Factor Correlations , 1999 .

[13]  M. B. Standing A Pressure-Volume-Temperature Correlation For Mixtures Of California Oils And Gases , 1947 .

[14]  Mohammed E. Osman,et al.  Correlation of PVT properties for UAE crudes , 1992 .

[15]  M. A. Al-Marhoun,et al.  Prediction of Oil PVT Properties Using Neural Networks , 2001 .

[16]  M. A. Al-Marhoun,et al.  Using Artificial Neural Networks to Develop New PVT Correlations for Saudi Crude Oils , 2002 .

[17]  S. M. Macary,et al.  Derivation of PVT Correlations for the Gulf of Suez Crude Oils. , 1993 .

[18]  Rafa Labedi Use of production data to estimate volume factor, density and compressibility of reservoir fluids , 1990 .

[19]  M. A. Al-Marhoun,et al.  New Correlations For Formation Volume Factors Of Oil And Gas Mixtures , 1992 .

[20]  J. A. Lasater,et al.  Bubble Point Pressure Correlation , 1958 .

[21]  M. A. Al-Marhoun,et al.  PVT correlations for Middle East crude oils , 1988 .

[22]  H. D. Beggs,et al.  Correlations for Fluid Physical Property Prediction , 1980 .

[23]  Adel M. Elsharkawy Modeling the Properties of Crude Oil and Gas Systems Using RBF Network , 1998 .

[24]  O. Glaso,et al.  Generalized Pressure-Volume-Temperature Correlations , 1980 .

[25]  E. Mizutani,et al.  Neuro-Fuzzy and Soft Computing-A Computational Approach to Learning and Machine Intelligence [Book Review] , 1997, IEEE Transactions on Automatic Control.

[26]  Z. Schmidt,et al.  Large data bank improves crude physical property correlations , 1994 .