Antimicrobial activity of plants from Brazilian Cerrado against Streptococcus mutans

Apesar do constante desenvolvimento do conhecimento, prevencao e tratamento da carie dental, esta doenca continua tendo alta prevalencia no Brasil e no mundo. Por este motivo, tem crescido o interesse por novos agentes farmacologicos que possam auxiliar no controle do biofilme dental, atuando contra o principal microrganismo associado ao desenvolvimento da carie, o Streptococcus mutans. Desta forma, o objetivo deste trabalho foi avaliar a atividade antimicrobiana do extrato de quatro plantas do cerrado brasileiro (e suas fracoes) contra S. mutans UA159. Extratos hidroalcoolicos de Lantana camara (Lc), Copaifera langsdorffii (Cl), Psidium guajava (Pg) e Cochlospermum regium (Cr), foram submetidos a testes de avaliacao da atividade antimicrobiana para determinacao das concentracoes inibitoria (CIM) e bactericida (CBM) minima, inibicao da aderencia e queda de pH em solucao. O extrato bruto das quatro plantas apresentaram potencial antimicrobiano e foram fracionados por gradiente de polaridade, sendo obtidas, para cada extrato, as fracoes hexânica (FHx), cloroformica (FCh), acetato de etila (FAc) e aquosa (FAq). Estas foram submetidas aos experimentos ja citados para determinacao da(s) fracao(oes) ativa(s) de cada extrato, selecionadas com base nos resultados dos testes de atividade antimicrobiana e no rendimento. Foram selecionadas, para a etapa subsequente de avaliacao em biofilme, 6 fracoes ativas: Lc-FHx e Lc-FCl, ambas com CIM = 15,6 µg/ml, e rendimento 9,5 e 17,5%, respectivamente; Cl-FHx, que apresentou CIM = 15,6 µg/ml, atividade inibitoria sobre a queda de pH em solucao e rendimento igual a 21%; Pg-FHx, com CIM = 125 µg/ml, 93,4% de inibicao da aderencia na concentracao de 62,5 µg/ml e rendimento igual a 2,0%; Cr-FHx, com CIM = 125 µg/ml, apresentou atividade inibitoria sobre queda de pH do meio e rendimento igual a 1,0% e Cr-FAq, que obteve CIM elevado, entretanto, inibiu 86,7% de aderencia bacteriana, na concentracao de 62,5 µg/ml, sendo o rendimento desta fracao 32%. As fracoes selecionadas foram submetidas a avaliacoes complementares, como: viabilidade bacteriana (time kill), inibicao de formacao e queda de pH em biofilme de S. mutans, utilizando discos de hidroxiapatita. Nos testes em biofilme, destacaram-se tres fracoes: Lc-FHx, que em concentracao 20xCIM, proporcionou reducao na viabilidade do microrganismo e diminuicao da formacao do biofilme tratado diariamente por 5 dias; Lc-FCh, que em concentracao equivalente a 20xCIM, reduziu a formacao de biofilme e Cl-FHx, que alem de reduzir a formacao de biofilme na concentracao de 20xCIM, interferiu na viabilidade do microrganismo, nas duas concentracoes testadas (10xCIM e 20xCIM). A composicao quimica das fracoes ativas em biofilme foi analisada por CG-EM. As demais fracoes testadas nesta etapa nao diferiram do controle negativo (veiculo) nos testes aplicados. Nenhuma das fracoes avaliadas afetou a reducao de pH do meio pelo biofilme. Em conclusao, as fracoes com polaridades baixa ou intermediaria das especies Lantana camara e Copaifera langsdorffii mostraram ter potencial para gerar novos compostos anti-carie de origem natural, tendo apresentado atividade antimicrobiana sobre o biofilme formado por S. mutans. Abstract

[1]  A. Yadav,et al.  Antimicrobial Activities of Leaf Extracts of Guava (Psidium guajava L.) on Two Gram-Negative and Gram-Positive Bacteria , 2013, International journal of microbiology.

[2]  C. Carvalho,et al.  Cytotoxicity of Brazilian plant extracts against oral microorganisms of interest to dentistry , 2013, BMC Complementary and Alternative Medicine.

[3]  H. Koo,et al.  Antimicrobial and antiproliferative activities of stingless bee Melipona scutellaris geopropolis , 2013, BMC Complementary and Alternative Medicine.

[4]  Pedro Luiz Rosalen,et al.  Antimicrobial Activity of Essential Oils against Streptococcus mutans and their Antiproliferative Effects , 2012, Evidence-based complementary and alternative medicine : eCAM.

[5]  V. C. Heleno,et al.  Antimicrobial Evaluation of Diterpenes from Copaifera langsdorffii Oleoresin Against Periodontal Anaerobic Bacteria , 2011, Molecules.

[6]  D. Devapriya,et al.  Antimicrobial Activity of Few Medicinal Plants against Clinically Isolated Human Cariogenic Pathogens—An In Vitro Study , 2011, ISRN dentistry.

[7]  H. Koo,et al.  Natural Products in Caries Research: Current (Limited) Knowledge, Challenges and Future Perspective , 2011, Caries Research.

[8]  M. Simões,et al.  Antimicrobial strategies effective against infectious bacterial biofilms. , 2011, Current medicinal chemistry.

[9]  W. Cunha,et al.  Antimicrobial activity of terpenoids from Copaifera langsdorffii Desf. against cariogenic bacteria , 2011, Phytotherapy research : PTR.

[10]  E. Palombo Traditional Medicinal Plant Extracts and Natural Products with Activity against Oral Bacteria: Potential Application in the Prevention and Treatment of Oral Diseases , 2011, Evidence-based complementary and alternative medicine : eCAM.

[11]  H. Koo,et al.  Exopolysaccharides Produced by Streptococcus mutans Glucosyltransferases Modulate the Establishment of Microcolonies within Multispecies Biofilms , 2010, Journal of bacteriology.

[12]  T. Nader POTENCIAL DE ATIVIDADE ANTIMICROBIANA in vitro DE EXTRATOS VEGETAIS DO CERRADO FRENTE ESTIRPES DE Staphylococcus aureus. , 2010 .

[13]  R. Burne,et al.  Protocols to study the physiology of oral biofilms. , 2010, Methods in molecular biology.

[14]  M. Shemesh,et al.  Genetic adaptation of Streptococcus mutans during biofilm formation on different types of surfaces , 2010, BMC Microbiology.

[15]  H. Koo,et al.  Naturally Occurring Molecules as Alternative Therapeutic Agents against Cariogenic Biofilms , 2009, Advances in dental research.

[16]  C. Costa-Neto,et al.  Identification of a bioactive compound isolated from Brazilian propolis type 6. , 2009, Bioorganic & medicinal chemistry.

[17]  N. Lall,et al.  Antimicrobial activity of medicinal plants against oral microorganisms. , 2008, Journal of ethnopharmacology.

[18]  M. Dos Santos,et al.  Inhibitory effects of 7-epiclusianone on glucan synthesis, acidogenicity and biofilm formation by Streptococcus mutans. , 2008, FEMS microbiology letters.

[19]  M. Shemesh,et al.  Expression of biofilm-associated genes of Streptococcus mutans in response to glucose and sucrose. , 2007, Journal of medical microbiology.

[20]  Camila Delarmelina,et al.  Activity of essential oils from Brazilian medicinal plants on Escherichia coli. , 2007, Journal of ethnopharmacology.

[21]  H. Padh,et al.  Search for antibacterial and antifungal agents from selected Indian medicinal plants. , 2006, Journal of ethnopharmacology.

[22]  M. Shemesh,et al.  Differential expression profiles of Streptococcus mutans ftf, gtf and vicR genes in the presence of dietary carbohydrates at early and late exponential growth phases. , 2006, Carbohydrate research.

[23]  O. Simon,et al.  The past and present use of plants for medicines. , 2006, The West Indian medical journal.

[24]  W. Bowen,et al.  The influence of a novel propolis on mutans streptococci biofilms and caries development in rats. , 2006, Archives of oral biology.

[25]  P. Marsh Dental plaque: biological significance of a biofilm and community life-style. , 2005, Journal of clinical periodontology.

[26]  Denis Bourgeois,et al.  The global burden of oral diseases and risks to oral health. , 2005, Bulletin of the World Health Organization.

[27]  S. Manfredini,et al.  Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods , 2005 .

[28]  A. A. Filho,et al.  ESTUDO COMPARATIVO DA ATIVIDADE ANTIMICROBIANA DE EXTRATOS DE ALGUMAS ÁRVORES NATIVAS , 2005, Arquivos do Instituto Biológico.

[29]  C. Nakamura,et al.  An evaluation of antibacterial activities of Psidium guajava (L.) , 2005 .

[30]  Y. Takeuchi,et al.  Anti-plaque agents in the prevention of biofilm-associated oral diseases. , 2003, Oral diseases.

[31]  W. Bowen,et al.  Effect of a novel type of propolis and its chemical fractions on glucosyltransferases and on growth and adherence of mutans streptococci. , 2003, Biological & pharmaceutical bulletin.

[32]  W. Bowen Do we need to be concerned about dental caries in the coming millennium? , 2002, Critical reviews in oral biology and medicine : an official publication of the American Association of Oral Biologists.

[33]  F. A. Gonçalves,et al.  Microbicidal effect of medicinal plant extracts (Psidium guajava Linn. and Carica papaya Linn.) upon bacteria isolated from fish muscle and known to induce diarrhea in children. , 2001, Revista do Instituto de Medicina Tropical de Sao Paulo.

[34]  A. A. Del Bel Cury,et al.  Biochemical Composition and Cariogenicity of Dental Plaque Formed in the Presence of Sucrose or Glucose and Fructose , 2000, Caries Research.

[35]  H. Koo,et al.  Effect of a New Variety of Apis mellifera Propolis onMutans Streptococci , 2000, Current Microbiology.

[36]  J. Calixto,et al.  Efficacy, safety, quality control, marketing and regulatory guidelines for herbal medicines (phytotherapeutic agents). , 2000, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[37]  R. Quivey,et al.  Adaptation of oral streptococci to low pH. , 2000, Advances in microbial physiology.

[38]  S. O. Gnan,et al.  Inhibition of Staphylococcus aureus by aqueous Goiaba extracts. , 1999, Journal of ethnopharmacology.

[39]  R. Braz-Filho Brazilian phytochemical diversity: bioorganic compounds produced by secondary metabolism as a source of new scientific development, varied industrial applications and to enhance human health and the quality of life , 1999 .

[40]  R. Burne,et al.  Physiologic homeostasis and stress responses in oral biofilms. , 1999, Methods in enzymology.

[41]  W. Bowen,et al.  Binding properties of streptococcal glucosyltransferases for hydroxyapatite, saliva-coated hydroxyapatite, and bacterial surfaces. , 1998, Archives of oral biology.

[42]  J. Novák,et al.  Extraction, assay, and analysis of antimicrobials from plants with activity against dental pathogens (Streptococcus sp.) , 1998, Journal of alternative and complementary medicine.

[43]  A. A. Del Bel Cury,et al.  In situ relationship between sucrose exposure and the composition of dental plaque. , 1997, Caries research.

[44]  W. Bowen,et al.  Glucans synthesized in situ in experimental salivary pellicle function as specific binding sites for Streptococcus mutans , 1992, Infection and immunity.

[45]  R. E. Marquis,et al.  Adaptation of Streptococcus mutans and Enterococcus hirae to acid stress in continuous culture , 1991, Applied and environmental microbiology.

[46]  J. Waitz Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically , 1990 .

[47]  H. Kuramitsu,et al.  Isolation and characterization of the Streptococcus mutans gtfD gene, coding for primer-dependent soluble glucan synthesis , 1989, Infection and immunity.

[48]  G. Dibdin,et al.  Physical and Biochemical Studies of Streptococcus mutans Sediments Suggest New Factors Linking the Cariogenicity of Plaque with its Extracellular Polysaccharide Content , 1988, Journal of dental research.

[49]  W. Loesche Role of Streptococcus mutans in human dental decay. , 1986, Microbiological reviews.

[50]  S. Hamada,et al.  Biology, immunology, and cariogenicity of Streptococcus mutans. , 1980, Microbiological reviews.

[51]  R. Gibbons,et al.  Bacterial adherence in oral microbial ecology. , 1975, Annual review of microbiology.

[52]  W H Bowen,et al.  Dental caries. , 1972, Archives of disease in childhood.