Integrable and superintegrable systems with spin in three-dimensional Euclidean space

A systematic search for superintegrable quantum Hamiltonians describing the interaction between two particles with spins 0 and is performed. We restrict to integrals of motion that are first-order (matrix) polynomials in the components of linear momentum. Several such systems are found and for one nontrivial example we show how superintegrability leads to exact solvability: we obtain exact (nonperturbative) bound-state energy formulas and exact expressions for the wave functions in terms of products of Laguerre and Jacobi polynomials.

[1]  P. Winternitz,et al.  An infinite family of solvable and integrable quantum systems on a plane , 2009, 0904.0738.

[2]  P. Winternitz,et al.  Integrable and superintegrable systems with spin , 2006, math-ph/0604050.

[3]  P. Winternitz,et al.  Quasiseparation of variables in the Schrödinger equation with a magnetic field , 2005, math-ph/0502046.

[4]  G. Pucacco,et al.  Integrable Hamiltonian systems with vector potentials , 2004, nlin/0405065.

[5]  S. Gravel Hamiltonians separable in cartesian coordinates and third-order integrals of motion , 2003, math-ph/0302028.

[6]  S. Gravel,et al.  Superintegrability with third-order integrals in quantum and classical mechanics , 2002, math-ph/0206046.

[7]  Miguel A. Rodriguez,et al.  Quantum superintegrability and exact solvability in n dimensions , 2001, math-ph/0110018.

[8]  P. Tempesta,et al.  Exact solvability of superintegrable systems , 2000, hep-th/0011209.

[9]  J. Hietarinta Pure quantum integrability , 1997, solv-int/9708010.

[10]  N. Evans Super-integrability of the Winternitz system , 1990 .

[11]  Evans,et al.  Superintegrability in classical mechanics. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[12]  V. Fock On the Theory of the Hydrogen Atom , 1988 .

[13]  F. Murnaghan Powers of representations of the rotation group (their symmetric, alternating, and other parts). , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[14]  P. Winternitz,et al.  A systematic search for nonrelativistic systems with dynamical symmetries , 1967 .

[15]  P. Winternitz,et al.  ON HIGHER SYMMETRIES IN QUANTUM MECHANICS , 1965 .

[16]  E. L. Hill,et al.  On the Problem of Degeneracy in Quantum Mechanics , 1940 .

[17]  V. Fock,et al.  Zur Theorie des Wasserstoffatoms , 1935 .

[18]  E. Kalnins Separation of variables for Riemannian spaces of constant curvature , 1986 .

[19]  Willard Miller,et al.  Symmetry and Separation of Variables , 1977 .

[20]  E. Merzbacher Quantum mechanics , 1961 .