Segmentation of Left Ventricle in Short-Axis MR Images Based on Fully Convolutional Network and Active Contour Model

[1]  Paul F. Whelan,et al.  Segmentation of the Left Ventricle of the Heart in 3-D+t MRI Data Using an Optimized Nonrigid Temporal Model , 2008, IEEE Transactions on Medical Imaging.

[2]  D. Altman,et al.  STATISTICAL METHODS FOR ASSESSING AGREEMENT BETWEEN TWO METHODS OF CLINICAL MEASUREMENT , 1986, The Lancet.

[3]  Gustavo Carneiro,et al.  Left ventricle segmentation from cardiac MRI combining level set methods with deep belief networks , 2013, 2013 IEEE International Conference on Image Processing.

[4]  David Clark,et al.  Comparison of real-time three-dimensional echocardiography with cardiovascular magnetic resonance for left ventricular volumetric assessment in unselected patients. , 2012, European heart journal cardiovascular Imaging.

[5]  Denis Friboulet,et al.  Fast automatic myocardial segmentation in 4D cine CMR datasets , 2014, Medical Image Anal..

[6]  Caroline Petitjean,et al.  A review of segmentation methods in short axis cardiac MR images , 2011, Medical Image Anal..

[7]  Hamid Jafarkhani,et al.  A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI , 2015, Medical Image Anal..

[8]  Paul F. Whelan,et al.  Left-ventricle myocardium segmentation using a coupled level-set with a priori knowledge , 2006, Comput. Medical Imaging Graph..

[9]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[10]  Men-Tzung Lo,et al.  Multiphase B-spline level set and incremental shape priors with applications to segmentation and tracking of left ventricle in cardiac MR images , 2014, Machine Vision and Applications.

[11]  Phi Vu Tran,et al.  A Fully Convolutional Neural Network for Cardiac Segmentation in Short-Axis MRI , 2016, ArXiv.

[12]  Huaifei Hu,et al.  Hybrid segmentation of left ventricle in cardiac MRI using Gaussian-mixture model and region restricted dynamic programming. , 2013, Magnetic resonance imaging.

[13]  Henggui Zhang,et al.  Multi-Views Fusion CNN for Left Ventricular Volumes Estimation on Cardiac MR Images , 2018, IEEE Transactions on Biomedical Engineering.

[14]  A. Tversky Features of Similarity , 1977 .

[15]  A. Beckett,et al.  AKUFO AND IBARAPA. , 1965, Lancet.

[16]  Thi-Thao Tran,et al.  Active contour model and nonlinear shape priors with application to left ventricle segmentation in cardiac MR images , 2016 .

[17]  Boudewijn P. F. Lelieveldt,et al.  A multiresolution image segmentation technique based on pyramidal segmentation and fuzzy clustering , 2000, IEEE Trans. Image Process..

[18]  Roberto Cipolla,et al.  SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Deniz Erdogmus,et al.  Tversky Loss Function for Image Segmentation Using 3D Fully Convolutional Deep Networks , 2017, MLMI@MICCAI.

[20]  Xin Yang,et al.  Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? , 2018, IEEE Transactions on Medical Imaging.

[21]  Ravi Bansal,et al.  Segmentation of Dynamic N-D Data Sets via Graph Cuts Using Markov Models , 2001, MICCAI.